Skip to main content
Log in

Modelling continuous materials using discrete element modelling: investigations on the effect of particle packing

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Preparing the particle packing model is a crucial step in modelling continuous materials using discrete element modelling (DEM) due to the close correlation between particle packing and material property. In this paper, two modified cubic packing models are generated by inserting smaller particles into the void space of simple cubic packing (SCP). Packing fractions and coordination numbers of two modified packing models increase gradually with the increase of insertion times. Size effect of each packing model is investigated and different packing models share the same characteristics, i.e. stress–strain curves of continuous materials created using different packing models under tensile loads tend to concentrate gradually with the increase of size ratio and their peak strengths raises gradually and then converge into constants. Uniaxial tensile DEM simulations are performed to investigate the impact of packing type and packing with or without rectangular defects on the mechanical behavior of continuous materials generated using different packing models. It is proven that SCP has the minimum uniaxial tensile strength compared to binary cubic packing (BCP) and triple cubic packing (TCP). Any packing with one of three kinds of rectangular defects tends to weaken its uniaxial tensile strength. From BCP to TCP, peak strength or stress has only slight improvements while total numbers of sub-particles soar greatly. The newly developed packing models in this paper enhance the understanding of the relationship between particle packing and material property although these models are formulated and computed in 2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Galakhov AV, Shevchenko VY (1992) Analysis of two-dimensional packings. Ceram Int 18(4):213–221

    Article  Google Scholar 

  2. Weitz DA (2004) Packing in the spheres. Science 303(5660):968–969

    Article  Google Scholar 

  3. Hudson DR (1949) Density and packing in an aggregate of mixed spheres. J Appl Phys 20(2):154–162

    Article  MathSciNet  MATH  Google Scholar 

  4. Patankar AN, Mandal G (1980) The packing of solid particles: a review. Trans Indian Ceram Soc 39(4):109–119

    Article  Google Scholar 

  5. Yu A (1989) The packing of solid particles. University of Wollongong [thesis]

  6. He H (2010) Computational modelling of particle packing in concrete. Delft University of Technology [thesis]

  7. Wang P, Arson C (2016) Discrete element modeling of shielding and size effects during single particle crushing. Comput Geotech 78(2016):227–236

    Article  Google Scholar 

  8. Li CX, An XZ, Yang RY, Zou RP, Yu AB (2011) Experimental study on the packing of uniform spheres under three-dimensional vibration. Powder Technol 208(3):617–622

    Article  Google Scholar 

  9. Mobius ME, Lauderdale BE, Nagel SR, Jaeger HM (2001) Size separation of granular particles. Nature 414(6861):270

    Article  Google Scholar 

  10. Hong DC, Quinn PV, Luding S (2001) Reverse Brazil nut problem: competition between percolation and condensation. Phys Rev Lett 86(15):3423–3426

    Article  Google Scholar 

  11. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotech 29(1):47–65

    Article  Google Scholar 

  12. Xia H, Tong X, Li Z, Wu X (2017) DEM-FEM coupling simulations of the interactions between particles and screen surface of vibrating screen. Int J Min Miner Eng 8(3):250–263

    Article  Google Scholar 

  13. Cleary PW, Owen PJ (2016) Using DEM to understand scale-up for a HICOM® mill. Miner Eng 92(2016):86–109

    Article  Google Scholar 

  14. Jiang M, Zhao Y, Liu G, Zheng J (2011) Enhancing mixing of particles by baffles in a rotating drum mixer. Particuology 9(3):270–278

    Article  Google Scholar 

  15. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  16. Cho N, Martin CD, Sego DC (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44(7):997–1010

    Article  Google Scholar 

  17. Jiang S, Li T, Tan Y (2015) A DEM methodology for simulating the grinding process of SiC ceramics. Procedia Eng 102(2015):1803–1810

    Article  Google Scholar 

  18. Ji S, Di S, Long X (2017) DEM simulation of uniaxial compressive and flexural strength of sea ice: parametric study. J Eng Mech 143(1):1–11

    Article  Google Scholar 

  19. Sheng Y, Yang D, Tan Y, Ye J (2010) Microstructure effects on transverse cracking in composite laminae by DEM. Compos Sci Technol 70(14):2093–2101

    Article  Google Scholar 

  20. Yang D, Ye J, Tan Y, Sheng Y (2011) Modeling progressive delamination of laminated composites by discrete element method. Comput Mater Sci 50(3):858–864

    Article  Google Scholar 

  21. André D, Iordanoff I, Charles J-l, Néauport J (2012) Discrete element method to simulate continuous material by using the cohesive beam model. CMAME 213–216(2012):113–125

    MATH  Google Scholar 

  22. Weerasekara NS, Powell MS, Cleary PW et al (2013) The contribution of DEM to the science of comminution. Powder Technol 248(2013):3–24

    Article  Google Scholar 

  23. Mishra BK, Thornton C (2001) Impact breakage of particle agglomerates. Int J Miner Process 61(4):225–239

    Article  Google Scholar 

  24. Thornton C, Liu L (2004) How do agglomerates break? Powder Technol 143–144(2004):110–116

    Article  Google Scholar 

  25. Torquato S, Truskett TM, Debenedetti PG (2000) Is random close packing of spheres well defined? Phys Rev Lett 84(10):2064–2067

    Article  Google Scholar 

  26. Christian E, Robert S, Peter E (2012) A discrete element model predicting the strength of ballast stones. Comput Struct 108–109(2012):3–13

    Google Scholar 

  27. Liu L, Kafui KD, Thornton C (2010) Impact breakage of spherical, cuboidal and cylindrical agglomerates. Powder Technol 199(2):189–196

    Article  Google Scholar 

  28. Pal G, Janosi Z, Kun F, Main IG (2016) Fragmentation and shear band formation by slow compression of brittle porous media. PhRvE 94(5):1–8

    Google Scholar 

  29. Quist J, Evertsson CM (2016) Cone crusher modelling and simulation using DEM. Miner Eng 85(2016):92–105

    Article  Google Scholar 

  30. Borkovec M, Paris WD, Peikert R (1994) The fractal dimension of the Apollonian sphere packing. Fractals 2(4):521–526

    Article  MathSciNet  MATH  Google Scholar 

  31. Bourke P (2006) An introduction to the Apollonian fractal. Comput Graph 30(1):134–136

    Article  Google Scholar 

  32. Li H, McDowell GR, Lowndes I (2013) Discrete-element modelling of rock breakage using dense random packing agglomerates. Géotech Lett 3(3):98–102

    Article  Google Scholar 

  33. Scholtès L, Donzé F-V (2013) A DEM model for soft and hard rocks: role of grain interlocking on strength. J Mech Phys Solids 61(2):352–369

    Article  Google Scholar 

  34. Antonyuk S, Khanal M, Tomas J, Heinrich S, Mörl L (2006) Impact breakage of spherical granules: experimental study and DEM simulation. Chem Eng Process 45(10):838–856

    Article  Google Scholar 

  35. Timar G, Blomer J, Kun F, Herrmann HJ (2010) New universality class for the fragmentation of plastic materials. Phys Rev Lett 104(9):1–4

    Article  Google Scholar 

  36. Chung YC, Yang ZH, Lin CK (2017) Modelling micro-crack initiation and propagation of crystal structures with microscopic defects under uni-axial tension by discrete element method. Powder Technol 315(2017):445–476

    Article  Google Scholar 

  37. Jia L, Chen M, Zhang W et al (2013) Experimental study and numerical modeling of brittle fracture of carbonate rock under uniaxial compression. MeReC 50:58–62

    Google Scholar 

  38. Yang S-Q, Tian W-L, Huang Y-H, Ranjith PG, Ju Y (2015) An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fissures under uniaxial compression. Rock Mech Rock Eng 49(4):1497–1515

    Article  Google Scholar 

  39. Yang D, Sheng Y, Ye J, Tan Y (2010) Discrete element modeling of the microbond test of fiber reinforced composite. Comput Mater Sci 49(2):253–259

    Article  Google Scholar 

Download references

Acknowledgements

Huihuang Xia and Xin Tong would like to acknowledge the Innovation Foundation for Graduate Students of Huaqiao University (No. 1511303046) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huihuang Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Li, Z. & Tong, X. Modelling continuous materials using discrete element modelling: investigations on the effect of particle packing. Comp. Part. Mech. 6, 823–836 (2019). https://doi.org/10.1007/s40571-019-00270-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00270-z

Keywords

Navigation