Skip to main content

Advertisement

Log in

Coordinating Marketing and Production with Asymmetric Costs: Theory and Estimation

  • Research Article
  • Published:
Customer Needs and Solutions Aims and scope Submit manuscript

A Correction to this article was published on 29 May 2020

This article has been updated

Abstract

This paper proposes a theoretical framework for decision making when the firm needs to make marketing and production/order decisions simultaneously before demand uncertainty is resolved. We discuss the theoretical properties of the framework for single and multi-product firms; in addition, we show that the framework can be extended to allow for competitive reaction in a duopoly setting. We propose an empirical method to operationalize the model and compare the results to those from extant methods. The empirical results for both single and multi-product firms show that the proposed method outperforms decision making using standard econometric methods. In particular, depending on customer lifetime value (CLV) and other error costs and price elasticities, the loss in potential profits by using the standard regression-based methodology or quantile regression can be considerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 29 May 2020

    The original article unfortunately contained a mistake

Notes

  1. See https://portal.developer.nielsen.com/store-availability/apis

References

  1. Fisher M, Rajaram K (2000) Accurate retail testing of fashion merchandise: methodology and application. Mark Sci 19(3):266–278

    Article  Google Scholar 

  2. Knight, Barnaby St John, and Stephen Shaw. “Method for optimizing new vehicle inventory for a car dealership.” U.S. Patent Application 14/067,348, filed May 1, 2014

  3. Sinitsyn M (2017) Pricing with prescheduled sales. Mark Sci 36(6):999–1014

    Article  Google Scholar 

  4. Rust RT, Lemon KN, Zeithaml VA (2004) Return on marketing: using customer equity to focus marketing strategy. J Mark 68(1):109–127

    Article  Google Scholar 

  5. Kumar V, Reinartz W (2016) Creating enduring customer value. J Mark 80(6):36–68

    Article  Google Scholar 

  6. Gupta S, Zeithaml V (2006) Customer metrics and their impact on financial performance. Mark Sci 25(6):718–739

    Article  Google Scholar 

  7. Gupta S, Hanssens D, Hardie B, Kahn W, Kumar V, Lin N, Ravishanker N, Sriram S (2006) Modeling customer lifetime value. J Serv Res 9(2):139–155

    Article  Google Scholar 

  8. Donkers B, Verhoef PC, de Jong MG (2007) Modeling CLV: a test of competing models in the insurance industry. Quant Mark Econ 5(2):163–190

    Article  Google Scholar 

  9. Petruzzi NC, Dada M (1999) Pricing and the newsvendor problem: a review with extensions. Oper Res 47(2):183–194

    Article  Google Scholar 

  10. Qin Y, Wang R, Vakharia AJ, Chen Y, Seref MMH (2011) The newsvendor problem: review and directions for future research. Eur J Oper Res 213(2):361–374

    Article  Google Scholar 

  11. Chen X, Simchi-Levi D (2004) Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: the finite horizon case. Oper Res 52(6):887–896

    Article  Google Scholar 

  12. Dong L, Kouvelis P, Tian Z (2009) Dynamic pricing and inventory control of substitute products. Manuf Serv Oper Manag 11(2):317339

    Article  Google Scholar 

  13. Abdel-Aal MAM, Syed MN, Selim SZ (2017) Multi-product selective newsvendor problem with service level constraints and market selection flexibility. Int J Prod Res 55(1):96–117

    Article  Google Scholar 

  14. Parlar M (1988) Game theoretic analysis of the substitutable product inventory problem with random demands. Nav Res Logist 35(3):397–409

    Article  Google Scholar 

  15. Benoit DF, Van den Poel D (2009) Benefits of quantile regression for the analysis of customer lifetime value in a contractual setting: an application in financial services. Expert Syst Appl 36(7):10475–10484

    Article  Google Scholar 

  16. Ross S, Mineiro P, and Langford J (2013) “Normalized online learning.” arXiv preprint arXiv:1305.6646

Download references

Acknowledgements

The authors thank the Editor-in-Chief and Matt Schneider, Drexel University, for their comments

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feihong Xia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1. Proofs of Propositions

1.1 Proof of Proposition 3 (Multi-Product Model)

First, we need the following Lemma:

Suppose Z = f(x1, x2) is a twice differentiable continuous function. Let \( \frac{d{x}_2}{d{x}_1}{\vert}_{f_1=0} \) and \( \frac{d{x}_2}{d{x}_1}{\vert}_{f_1=0} \), respectively, denote the loci of all (x1, x2) pairs satisfying the first-order conditions. Then, \( \frac{d{x}_2}{d{x}_1}{\vert}_{f_1=0}-\frac{d{x}_2}{d{x}_1}{\vert}_{f_2=0}>0 \) if f12 > 0 and \( \frac{d{x}_2}{d{x}_1}{\vert}_{f_1=0}-\frac{d{x}_2}{d{x}_1}{\vert}_{f_2=0}<0 \) if f12 < 0.

Proof:

The first-order conditions are \( \frac{\partial Z}{\partial {x}_1}={f}_1\left({x}_1,{x}_2\right)=0 \) and \( \frac{\partial Z}{\partial {x}_2}={f}_2\left({x}_1,{x}_2\right)=0 \). By taking total differentials, f11dx1 + f12dx2 ≡ 0. Hence, \( \frac{d{x}_2}{d{x}_1}{\vert}_{f_1=0}=\frac{-{f}_{11}}{f_{12}} \) >0 if f12 > 0 and < 0 if f12 < 0.

Similarly, f21dx1 + f22dx2 ≡ 0. Hence, \( \frac{d{x}_2}{d{x}_1}{\vert}_{f_2=0}=\frac{-{f}_{21}}{f_{22}} \) >0 if f12 > 0 and < 0 if f12 < 0.

Subtracting, we get, \( \frac{d{x}_2}{d{x}_1}{\vert}_{f_1=0}-\frac{d{x}_2}{d{x}_1}{\vert}_{f_2=0}=\frac{-{f}_{11}}{f_{12}}+\frac{f_{21}}{f_{22}}=\frac{-\left({f}_{11}{f}_{22}-{f}_{12}^2\right)}{f_{12}{f}_{22}} \) > 0 if f12 > 0 and < 0 if f12 < 0. Q.E.D.

1.1.1 Comparison of Accounting and Economic Profit Models

We distinguish two cases based on the signs of \( \frac{\partial^2A}{\partial {p}_1\partial {p}_2} \) and \( \frac{\partial^2E\left(\pi \right)}{\partial {p}_1\partial {p}_2} \) where A denotes accounting profit and π denotes economic profit. In our model, \( \frac{\partial^2A}{\partial {p}_1\partial {p}_2}=\frac{\partial^2E\left(\pi \right)}{\partial {p}_1\partial {p}_2}=\frac{\partial {f}_1}{\partial {p}_2}+\frac{\partial^2{f}_1}{\partial {p}_1\partial {p}_2}\left({p}_1-{c}_1\right)+\frac{\partial^2{f}_2}{\partial {p}_1\partial {p}_2}\left({p}_2-{c}_2\right)+\frac{\partial {f}_2}{\partial {p}_1} \).

Suppose f1and f2 are additively separable in p1and p2. Then, \( \frac{\partial^2A}{\partial {p}_1\partial {p}_2}>0 \) and \( \frac{\partial^2E\left(\pi \right)}{\partial {p}_1\partial {p}_2}>0 \) if the products are substitutes and \( \frac{\partial^2A}{\partial {p}_1\partial {p}_2}<0 \) if the products are complements.

1.1.2 Case 1: Products Are Substitutes (ϕ1 > 0, ϕ2 > 0)

In Fig. 1, let AB and CD respectively denote the loci of all (p1, p2) pairs satisfying \( \frac{\partial A}{\partial {p}_1}=0 \) and \( \frac{\partial A}{\partial {p}_2}=0 \). Then, both AB and CD are upward sloping and AB is steeper than CD (see Lemma and Proof).

Fig. 1
figure 1

Multi-product model (substitutes)

Similarly, let A′B′ and C′D ′, respectively, denote the loci of all (p1, p2) pairs satisfying \( \frac{\partial E\left(\pi \right)}{\partial {p}_1}=0 \) and \( \frac{\partial E\left(\pi \right)}{\partial {p}_2}=0 \). Then, both A′B′ and C′D ′ are upward sloping and A′B′ is steeper than C′D ′ (see Lemma and Proof).

Let \( \widehat{p_1} \) and \( \widehat{p_2} \) denote any pair that satisfies \( \frac{\partial A}{\partial {p}_1}=0 \). At this point, \( \frac{\partial E\left(\pi \right)}{\partial {p}_1}=\frac{\partial A}{\partial {p}_1}-E\left({u}_1>0\right)+E\left({u}_1<0\right) \). Hence, by concavity, holding p2 constant, p1 must be reduced so that \( \frac{\partial E\left(\pi \right)}{\partial {p}_1}=0 \). This implies that A′B′ is always to the left of AB.

Similarly, we can show that C′D ′ is always below CD.

Hence, the economic profit model always leads to lower prices for both products than the accounting profit model if the demand functions are additively separable and the products are substitutes (Proposition 3).

Case 2: Products are Complements (ϕ1 < 0, ϕ2 < 0)

Proceeding as in Case 1, we can show that both AB and CD are downward sloping and AB is steeper than CD (see Fig. 2). Similarly, both A′B′ and C′D ′ are downward sloping and A′B′ is steeper than C′D ′. Hence, we can only exclude the case that both products are priced higher in the economic profit model than in the accounting profit model.

Fig. 2
figure 2

Multi-product model (complements)

1.2 Proof of Proposition 4 (Duopoly Model)

Let \( {\overline{\uppi}}^{(1)} \):

: expected profit for Firm 1

\( {\overline{\uppi}}^{(2)} \) :

: expected profit for Firm 2

\( {\overline{\pi}}_1^{(1)} \) :

: first derivative for Firm 1 w.r.t own price p1

\( {\overline{\uppi}}_2^{(2)} \) :

: first derivative for Firm 2 w.r.t own price p2

\( {\overline{\uppi}}_{12}^{(1)} \) :

: cross partial for Firm 1 w.r.t prices p1 and p2

\( {\overline{\uppi}}_{21}^{(2)} \) :

: cross partial for Firm 2 w.r.t prices p1 and p2

\( {\overline{\uppi}}_{11}^{(1)} \) :

: second derivative for Firm 1 w.r.t price p1

\( {\overline{\pi}}_{22}^{(2)} \) :

: second derivative for Firm 2 w.r.t price p2

$$ {\displaystyle \begin{array}{c}{\overline{\pi}}^{(1)}=\left({p}_1-{c}_1\right){f}_1\left({p}_1\right)+{c}_1{\delta}_1E\left({u}_1<0\right)+{p}_1E\left({u}_1<0\right)-{\theta}_1\left({p}_1-{c}_1\right)E\left({u}_1>0\right)\\ {}{\overline{\pi}}^{(2)}=\left({p}_2-{c}_2\right){f}_2\left({p}_2\right)+{c}_2{\delta}_2E\left({u}_2<0\right)+{p}_2E\left({u}_2<0\right)-{\theta}_2\left({p}_2-{c}_2\right)E\left({u}_2>0\right)\end{array}} $$

Suppose the demand function is additively separable in its arguments. Thus,

$$ {\displaystyle \begin{array}{c}{f}_1\left({p}_1\right)={\alpha}_1-{\upbeta}_1{p}_1+{\phi}_1{p}_2\\ {}{f}_2\left({p}_2\right)={\alpha}_2-{\upbeta}_2{p}_2+{\phi}_2{p}_1\end{array}} $$

Then, \( {\overline{\uppi}}_{12}^{(1)}={\phi}_1>0 \) and \( {\overline{\uppi}}_{21}^{(2)}={\phi}_2>0 \), where ϕ1 ≠ ϕ2 in general.

At \( {\overline{\uppi}}_1^{(1)}=0 \) the total differential is \( {\overline{\uppi}}_{11}^{(1)}d{p}_1+{\overline{\uppi}}_{12}^{(1)}{p}_2\equiv 0 \).

Thus, \( {\left.\frac{d{p}_2}{d{p}_1}\right|}_{{\overline{\uppi}}_1^{(1)}}=\frac{-{\overline{\uppi}}_{11}^{(1)}}{{\overline{\uppi}}_{12}^{(1)}}>0 \) and similarly, \( {\left.\frac{d{p}_2}{d{p}_1}\right|}_{{\overline{\uppi}}_2^{(2)}}=\frac{-{\overline{\uppi}}_{21}^{(2)}}{{\overline{\uppi}}_{22}^{(2)}}>0 \).

Subtracting, \( {\left.\frac{d{p}_2}{d{p}_1}\right|}_{{\overline{\uppi}}_1^{(1)}}-{\left.\frac{d{p}_2}{d{p}_1}\right|}_{{\overline{\uppi}}_2^{(2)}}=\frac{-{\overline{\uppi}}_{11}^{(1)}}{{\overline{\uppi}}_{12}^{(1)}}+\frac{{\overline{\uppi}}_{21}^{(2)}}{{\overline{\uppi}}_{22}^{(2)}}=-\frac{{\overline{\uppi}}_{11}^{(1)}{\overline{\uppi}}_{22}^{(2)}-{\overline{\uppi}}_{12}^{(1)}{\overline{\uppi}}_{21}^{(2)}}{{\overline{\uppi}}_{12}^{(1)}{\overline{\uppi}}_{22}^{(2)}}>0 \) by the second-order conditions.

Proposition 4 follows immediately following the same method as in the multi-product case for substitutes. Hence, the economic profit model leads to lower prices than the accounting profit model if demand is additively separable.

Appendix 2. Optimal Price Derivation

1.1 Optimal Price for Proposed Model

Suppose based on our proposed method, the quantity estimate for a price point p is \( \widehat{\mu}=\alpha +\upbeta p \), and the difference between realized demand y and \( \widehat{\mu} \) is \( u=y-\widehat{\mu} \). Furthermore, assume that the demand function is linear: y = α0 + β0p + ε, and ε~N(0, σ2). Then, the demand function can be estimated by ordinary least squares. At each point p, y follows a normal distribution with density function f(y) and cumulative distribution function F(y).

At price point p, the expected profit is as follows:

$$ {\displaystyle \begin{array}{ll}E\left(\pi \right)={\int}_{u<0}\pi du+{\int}_{u\ge 0}\pi du& ={\int}_{u<0}\left[\left(p-c\right)\left(\alpha +\beta p+u\right)+ c\delta u\right] du+{\int}_{u\ge 0}\left[\left(p-c\right)\left(\alpha +\beta p\right)-\varphi \left(p-c\right)u\right] du\\ {}& =\left(p-c\right)\left(\alpha +\beta p\right)+\left(p+ c\delta \right){E}_{u<0}(u)-\varphi \left(p-c\right){E}_{u\ge 0}(u)\\ {}& =\left(p-c\right)\left(\alpha +\beta p\right)+p{E}_{u<0}(u)-c{E}_{u<0}(u)+ c\delta {E}_{u<0}(u)-\varphi p{E}_{u\ge 0}(u)+\varphi c{E}_{u\ge 0}(u)\end{array}} $$

Taking the derivative with respect to p, we have

$$ {\displaystyle \begin{array}{l}\frac{\partial \left(p-c\right)\left(\alpha +\upbeta p\right)}{\partial p}=\alpha +2\upbeta p-c\upbeta \\ {}\frac{\partial p{E}_{u<0}(u)}{\partial p}=\frac{\partial p{\int}_{-\infty}^{\widehat{\mu}}\left(y-\alpha -\upbeta p\right)f(y) dy}{\partial p}\\ {}\frac{\partial p{\int}_{-\infty}^{\widehat{\mu}}\left(\alpha \right)f(y) dy}{\partial p}=\left(\alpha \right)F\left(\widehat{\mu}\right)+p\left(\left(\alpha \right)f\left(\widehat{\mu}\right)\upbeta -\frac{\upbeta_0\left(\alpha \right)}{\sqrt{2{\uppi \upsigma}^2}}\exp \left(\frac{-{\left(\widehat{\mu}-{\alpha}_0-{\upbeta}_0p\right)}^2}{2{\upsigma}^2}\right)\right)\\ {}\frac{\partial p{\int}_{-\infty}^{\widehat{\mu}}\left(\left(\upbeta \right)p\right)f(y) dy}{\partial p}=\left(\upbeta \right) pF\left(\widehat{\mu}\right)+p\left( pF\left(\widehat{\mu}\right){\upbeta}^2+\left(\upbeta \right)F\left(\widehat{\mu}\right)-\frac{\upbeta_0\upbeta p}{\sqrt{2{\uppi \upsigma}^2}}\exp \left(\frac{-{\left(\widehat{\mu}-{\alpha}_0-{\upbeta}_0p\right)}^2}{2{\upsigma}^2}\right)\right)\\ {}\frac{\partial p{\int}_{-\infty}^{\widehat{\mu}}(y)f(y) dy}{\partial p}=\left({\alpha}_0+{\upbeta}_0p\right)F\left(\widehat{\mu}\right)-\frac{\sigma }{\sqrt{2\uppi}}\exp \left(\frac{-{\left(\widehat{\mu}-{\alpha}_0-{\upbeta}_0p\right)}^2}{2{\upsigma}^2}\right)+p\left(\left(\widehat{\mu}\right)f\left(\widehat{\mu}\right)\upbeta -\left(\widehat{\mu}\right)f\left(\widehat{\mu}\right){\upbeta}_0+F\left(\widehat{\mu}\right){\upbeta}_0\right)\\ {}\frac{\partial p{E}_{u\ge 0}(u)}{\partial p}=\frac{\partial p{\int}_{\widehat{\mu}}^{+\infty}\left(y-\alpha -\upbeta p\right)f(y) dy}{\partial p}\\ {}\frac{\partial p{\int}_{\widehat{\mu}}^{+\infty}\left(\alpha \right)f(y) dy}{\partial p}=\left(\alpha \right)\left(1-F\left(\widehat{\mu}\right)\right)+p\left(-\left(\alpha \right)f\left(\widehat{\mu}\right)\upbeta +\frac{\upbeta_0\left(\alpha \right)}{\sqrt{2\uppi {\sigma}^2}}\exp \left(\frac{-{\left(\widehat{\mu}-{\alpha}_0-{\upbeta}_0p\right)}^2}{2{\upsigma}^2}\right)\right)\\ {}\frac{\partial p{\int}_{\widehat{\mu}}^{+\infty}\left(\left(\upbeta \right)p\right)f(y) dy}{\partial p}=\left(\upbeta \right)p\left(1-F\left(\widehat{\mu}\right)\right)+p\left(p\left(1-F\left(\widehat{\mu}\right)\right){\upbeta}^2+\left(\upbeta \right)\left(1-F\left(\widehat{\mu}\right)\right)+\frac{\upbeta_0\upbeta p}{\sqrt{2{\uppi \upsigma}^2}}\exp \left(\frac{-{\left(\widehat{\mu}-{\alpha}_0-{\upbeta}_0p\right)}^2}{2{\sigma}^2}\right)\right)\\ {}\frac{\partial p{\int}_{\widehat{\mu}}^{+\infty }(y)f(y) dy}{\partial p}=\left({\alpha}_0+{\upbeta}_0p\right)\left(1-F\left(\widehat{\mu}\right)\right)+\frac{\upsigma}{\sqrt{2\uppi}}\exp \left(\frac{-{\left(\widehat{\mu}-{\alpha}_0-{\upbeta}_0p\right)}^2}{2{\upsigma}^2}\right)+p\left(-\left(\widehat{\mu}\right)f\left(\widehat{\mu}\right)\upbeta +\left(\widehat{\mu}\right)f\left(\widehat{\mu}\right){\upbeta}_0+\left(1-F\left(\widehat{\mu}\right)\right){\upbeta}_0\right)\end{array}} $$

The optimal price p* is then the value that makes the derivative equal to 0.

1.2 Optimal Price for OLS and Quantile Regression

For both OLS and quantile regression, Eu < 0(u) and Eu ≥ 0(u) are, by definition, independent of p. Therefore, the derivation of the optimal price is much simpler than for the proposed method.

At the optimal price point p, the expected profit is as follows:

$$ E\left(\uppi \right)={\int}_{u<0}\uppi du+{\int}_{u\ge 0}\uppi du={\int}_{u<0}\left[\left(p-c\right)\left(\alpha -\upbeta p+u\right)+c\updelta u\right] du+{\int}_{u\ge 0}\left[\left(p-c\right)\left(\alpha -\upbeta p\right)-\upvarphi \left(p-c\right)u\right] du=\left(p-c\right)\left(\alpha -\beta p\right)+\left(p+c\updelta \right){E}_{u<0}(u)-\upvarphi \left(p-c\right){E}_{u\ge 0}(u) $$

In order to maximize expected profit, we take the derivative of the expected profit function and set it to 0:

$$ \frac{\partial E\left(\uppi \right)}{\partial p}=\alpha -2\upbeta p+c\upbeta +{E}_{u<0}(u)-\upvarphi {E}_{u\ge 0}(u)=0 $$

Then, the optimal price\( {p}^{\ast }=\frac{\alpha }{2\upbeta}+\frac{c}{2}+\frac{1}{2\upbeta}{E}_{u<0}(u)-\frac{\upvarphi}{2\upbeta}{E}_{u\ge 0}(u) \)

For both OLS and quantile regression:

$$ {E}_{u<0}={\int}_{-\infty}^{\upmu}\left(y-\upmu \right)f(y) dy=\frac{-\upsigma}{\sqrt{2\uppi}}\exp \left(\frac{-{\upmu}^2}{2{\upsigma}^2}\right)-\upmu F\left(\upmu \right) $$

Appendix 3. Algorithm for Estimation

We used a recently proposed Normalized Adaptive Gradient Descent (NAG) algorithm for model training[16]. The algorithm scales gradients automatically in each step in order to reach the minimum fast while keeping the estimates stable. The detailed model training steps are as follows:

First, set values for the learning rate α. We set α = 2 for our model training, as suggested by the authors of NAG. Set the initial parameter value βi = 0. We also need to set the initial values for the tuning parameters: si = 0, Gi = 0, N = 0.

For each step t, we randomly pick a sample (x, y)

$$ {\displaystyle \begin{array}{l}\mathrm{for}\ \mathrm{each}\ \mathrm{independent}\ \mathrm{variable}\ i\ \left(\mathrm{including}\ \mathrm{the}\ \mathrm{intercept}\right),\mathrm{if}\mid {x}_i\mid >{s}_i\\ {}1.\ {\upbeta}_i\leftarrow \frac{\upbeta_i{s}_i}{\mid {x}_i\mid}\\ {}2.\ {s}_i\leftarrow \mid {x}_i\mid \\ {}\mathrm{end}\\ {}\widehat{y}=\sum \limits_i{\upbeta}_i{x}_i\\ {}N\leftarrow N+\sum \limits_i\frac{x_i^2}{s_i^2}\\ {}\mathrm{for}\ \mathrm{each}\ i,\\ {}1.\ {G}_i\leftarrow {G}_i+{\left(\frac{\partial L\left(\widehat{y},y\right)}{\partial {\upbeta}_i}\right)}^2\\ {}2.\ {\upbeta}_i\leftarrow {\upbeta}_i-\alpha \sqrt{\frac{t}{N}}\frac{1}{s_i\sqrt{G_i}}\frac{\partial L\left(\widehat{y},y\right)}{\partial {\upbeta}_i}\\ {}\mathrm{end}\end{array}} $$

Appendix 4. Additional Simulation Results

1.1 One-Product Case

Table 4 shows the prices, quantities, and expected economic profits for different estimators for different cost-price ratios (i.e., 0.3, 0.5, and 0.7) and CLV parameters (i.e., 1 and 2). These results support the conclusion in the text that, in general, the proposed model leads to higher prices and quantities than OLS and quantile regression. Furthermore, regardless of parameter values, the proposed model leads to higher expected economic profits than OLS or quantile regression.

Table 4 Optimal prices, quantities, and expected economic profits

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagpal, S., Xia, F. Coordinating Marketing and Production with Asymmetric Costs: Theory and Estimation. Cust. Need. and Solut. 6, 1–12 (2019). https://doi.org/10.1007/s40547-019-00094-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40547-019-00094-1

Keywords

Navigation