Skip to main content

Advertisement

Log in

Association of estimated carotid-femoral pulse wave velocity with frailty in middle-aged and older adults with cardiometabolic disease

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Purpose

The prevalence of frailty in individuals with cardiometabolic disease (CMD) has become a growing concern in public health. The purpose of this study was to investigate the association between estimated pulse wave velocity (ePWV) and frailty in middle-aged and older adults with CMD.

Methods

We analyzed data from 23,313 non-institutionalized adults with CMD from the National Health and Nutrition Examination Survey 2003–2018. Frailty status was determined using the frailty index, and logistic regression models were used to assess the association of ePWV with frailty risk. Multivariable logistic regression and propensity-score matching (PSM) were used to adjust for potential confounders. The restricted cubic spline regression model was used to evaluate the non-linear association between ePWV and frailty risk.

Results

After adjusting for potential confounding factors, we found that each one m/s increase in ePWV was associated with a 15% higher risk of frailty (odds ratio [OR] = 1.15, 95% confidence interval [CI] 1.12 to 1.18, P < 0.001). After PSM, the association remained significant (OR = 1.05, 95% CI 1.03 to 1.08, P < 0.001). The logistic models with restricted cubic splines showed a non-linear dose–response association, with the risk of frailty increasing more rapidly when ePWV exceeded 9.5 m/s.

Conclusions

The findings of this study suggest that a higher level of ePWV is associated with an increased risk of frailty in middle-aged and older adults with CMD, and may serve as a viable alternative to directly measured cfPWV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The NHANES datasets are publicly available in “www.cdc.gov/nchs/nhanes/”.

References

  1. GBD (2019) Risk Factors Collaborators (2020) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2

    Article  Google Scholar 

  2. Roth GA, Mensah GA, Johnson CO et al (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 76:2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  3. Miranda JJ, Barrientos-Gutiérrez T, Corvalan C et al (2019) Understanding the rise of cardiometabolic diseases in low- and middle-income countries. Nat Med 25:1667–1679. https://doi.org/10.1038/s41591-019-0644-7

    Article  CAS  PubMed  Google Scholar 

  4. Chang AY, Skirbekk VF, Tyrovolas S et al (2019) Measuring population ageing: an analysis of the Global Burden of Disease Study 2017. Lancet Public Health 4:e159–e167. https://doi.org/10.1016/S2468-2667(19)30019-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Richter D, Guasti L, Walker D et al (2022) Frailty in cardiology: definition, assessment and clinical implications for general cardiology. A consensus document of the Council for Cardiology Practice (CCP), Association for Acute Cardio Vascular Care (ACVC), Association of Cardiovascular Nursing and Allied Professions (ACNAP), European Association of Preventive Cardiology (EAPC), European Heart Rhythm Association (EHRA), Council on Valvular Heart Diseases (VHD), Council on Hypertension (CHT), Council of Cardio-Oncology (CCO), Working Group (WG) Aorta and Peripheral Vascular Diseases, WG e-Cardiology, WG Thrombosis, of the European Society of Cardiology, European Primary Care Cardiology Society (EPCCS). Eur J Prev Cardiol 29:216–227. https://doi.org/10.1093/eurjpc/zwaa167

    Article  PubMed  Google Scholar 

  6. Wilkinson C, Rockwood K (2022) Frailty assessment in the management of cardiovascular disease. Heart 108:1991–1995. https://doi.org/10.1136/heartjnl-2022-321265

    Article  PubMed  Google Scholar 

  7. Brunner EJ, Shipley MJ, Ahmadi-Abhari S et al (2018) Midlife contributors to socioeconomic differences in frailty during later life: a prospective cohort study. Lancet Public Health 3:e313–e322. https://doi.org/10.1016/S2468-2667(18)30079-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hoogendijk EO, Afilalo J, Ensrud KE et al (2019) Frailty: implications for clinical practice and public health. Lancet 394:1365–1375. https://doi.org/10.1016/S0140-6736(19)31786-6

    Article  PubMed  Google Scholar 

  9. Monin J, Doyle M, Levy B et al (2016) Spousal associations between frailty and depressive symptoms: longitudinal findings from the cardiovascular health study. J Am Geriatr Soc 64:824–830. https://doi.org/10.1111/jgs.14023

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li G, Prior JC, Leslie WD et al (2019) Frailty and risk of fractures in patients with type 2 diabetes. Diabetes Care 42:507–513. https://doi.org/10.2337/dc18-1965

    Article  PubMed  Google Scholar 

  11. Ida S, Kaneko R, Imataka K et al (2019) Relationship between frailty and mortality, hospitalization, and cardiovascular diseases in diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol 18:81. https://doi.org/10.1186/s12933-019-0885-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Damluji AA, Chung S-E, Xue Q-L et al (2021) Frailty and cardiovascular outcomes in the National Health and Aging Trends Study. Eur Heart J 42:3856–3865. https://doi.org/10.1093/eurheartj/ehab468

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qayyum S, Rossington JA, Chelliah R et al (2020) Prospective cohort study of elderly patients with coronary artery disease: impact of frailty on quality of life and outcome. Open Heart 7:e001314. https://doi.org/10.1136/openhrt-2020-001314

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fan J, Yu C, Guo Y et al (2020) Frailty index and all-cause and cause-specific mortality in Chinese adults: a prospective cohort study. Lancet Public Health 5:e650–e660. https://doi.org/10.1016/S2468-2667(20)30113-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kojima G, Iliffe S, Walters K (2018) Frailty index as a predictor of mortality: a systematic review and meta-analysis. Age Ageing 47:193–200. https://doi.org/10.1093/ageing/afx162

    Article  PubMed  Google Scholar 

  16. Chode S, Malmstrom TK, Miller DK et al (2016) Frailty, diabetes, and mortality in middle-aged African Americans. J Nutr Health Aging 20:854–859. https://doi.org/10.1007/s12603-016-0801-3

    Article  CAS  PubMed  Google Scholar 

  17. Dent E, Kowal P, Hoogendijk EO (2016) Frailty measurement in research and clinical practice: a review. Eur J Intern Med 31:3–10. https://doi.org/10.1016/j.ejim.2016.03.007

    Article  PubMed  Google Scholar 

  18. Blodgett J, Theou O, Kirkland S et al (2015) Frailty in NHANES: comparing the frailty index and phenotype. Arch Gerontol Geriatr 60:464–470. https://doi.org/10.1016/j.archger.2015.01.016

    Article  PubMed  Google Scholar 

  19. Rockwood K, Andrew M, Mitnitski A (2007) A comparison of two approaches to measuring frailty in elderly people. J Gerontol A Biol Sci Med Sci 62:738–743. https://doi.org/10.1093/gerona/62.7.738

    Article  PubMed  Google Scholar 

  20. Kulminski AM, Ukraintseva SV, Kulminskaya IV et al (2008) Cumulative deficits better characterize susceptibility to death in elderly people than phenotypic frailty: lessons from the Cardiovascular Health Study. J Am Geriatr Soc 56:898–903. https://doi.org/10.1111/j.1532-5415.2008.01656.x

    Article  PubMed  PubMed Central  Google Scholar 

  21. Piotrowicz K, Gąsowski J (2020) Risk factors for frailty and cardiovascular diseases: are they the same? In: Veronese N (ed) Frailty and cardiovascular diseases: research into an elderly population. Springer International Publishing, Cham, pp 39–50

    Chapter  Google Scholar 

  22. Orkaby AR, Lunetta KL, Sun FJ et al (2019) Cross-sectional association of frailty and arterial stiffness in community-dwelling older adults: the Framingham heart study. J Gerontol A Biol Sci Med Sci 74:373–379. https://doi.org/10.1093/gerona/gly134

    Article  PubMed  Google Scholar 

  23. Nadruz W, Kitzman D, Windham BG et al (2017) Cardiovascular dysfunction and frailty among older adults in the community: the ARIC study. J Gerontol A Biol Sci Med Sci 72:958–964. https://doi.org/10.1093/gerona/glw199

    Article  PubMed  Google Scholar 

  24. Laurent S, Cockcroft J, Van Bortel L et al (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605. https://doi.org/10.1093/eurheartj/ehl254

    Article  PubMed  Google Scholar 

  25. The Reference Values for Arterial Stiffness' Collaboration (2010) Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J 31:2338–2350. https://doi.org/10.1093/eurheartj/ehq165

    Article  PubMed Central  Google Scholar 

  26. Greve SV, Blicher MK, Kruger R et al (2016) Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity. J Hypertens 34:1279–1289. https://doi.org/10.1097/HJH.0000000000000935

    Article  CAS  PubMed  Google Scholar 

  27. Jae SY, Heffernan KS, Park JB et al (2021) Association between estimated pulse wave velocity and the risk of cardiovascular outcomes in men. Eur J Prev Cardiol 28:e25–e27. https://doi.org/10.1177/2047487320920767

    Article  PubMed  Google Scholar 

  28. Heffernan KS, Wilmoth JM, London AS (2022) Estimated pulse wave velocity and all-cause mortality: findings from the health and retirement study. Innov Aging 6:igac056. https://doi.org/10.1093/geroni/igac056

  29. Heffernan KS, Jae SY, Loprinzi PD (2020) Association between estimated pulse wave velocity and mortality in U.S. Adults J Am Coll Cardiol 75:1862–1864. https://doi.org/10.1016/j.jacc.2020.02.035

    Article  PubMed  Google Scholar 

  30. Vlachopoulos C, Terentes-Printzios D, Laurent S et al (2019) Association of estimated pulse wave velocity with survival: a secondary analysis of SPRINT. JAMA Netw Open 2:e1912831. https://doi.org/10.1001/jamanetworkopen.2019.12831

    Article  PubMed  PubMed Central  Google Scholar 

  31. National Center for Health Statistics (2020) NHANES—about the National Health and Nutrition Examination Survey. https://www.cdc.gov/nchs/nhanes/about_nhanes.htm. Accessed 7 Apr 2022

  32. Centers for Disease Control and Prevention (2022) NCHS Research Ethics Review Board (ERB) Approval. https://www.cdc.gov/nchs/nhanes/irba98.htm. Accessed 9 Nov 2022

  33. Guo F, Moellering DR, Garvey WT (2014) The progression of cardiometabolic disease: validation of a new cardiometabolic disease staging system applicable to obesity. Obesity (Silver Spring) 22:110–118. https://doi.org/10.1002/oby.20585

    Article  PubMed  Google Scholar 

  34. Searle SD, Mitnitski A, Gahbauer EA et al (2008) A standard procedure for creating a frailty index. BMC Geriatr 8:24. https://doi.org/10.1186/1471-2318-8-24

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rockwood K, Mitnitski AB, MacKnight C (2002) Some mathematical models of frailty and their clinical implications. Rev Clin Gerontol 12:109–117. https://doi.org/10.1017/S0959259802012236

    Article  Google Scholar 

  36. Möller S, Bliddal M, Rubin KH (2021) Methodical considerations on adjusting for Charlson Comorbidity Index in epidemiological studies. Eur J Epidemiol 36:1123–1128. https://doi.org/10.1007/s10654-021-00802-z

    Article  PubMed  Google Scholar 

  37. Charlson ME, Carrozzino D, Guidi J et al (2022) Charlson comorbidity index: a critical review of clinimetric properties. Psychother Psychosom 91:8–35. https://doi.org/10.1159/000521288

    Article  PubMed  Google Scholar 

  38. Stekhoven DJ, Bühlmann P (2012) MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics 28:112–118. https://doi.org/10.1093/bioinformatics/btr597

    Article  CAS  PubMed  Google Scholar 

  39. Heffernan KS, Stoner L, London AS et al (2023) Estimated pulse wave velocity as a measure of vascular aging. PLoS One 18:e0280896. https://doi.org/10.1371/journal.pone.0280896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu Y, Pechlaner R, Cai J et al (2020) Trajectories of age-related arterial stiffness in Chinese men and women. J Am Coll Cardiol 75:870–880. https://doi.org/10.1016/j.jacc.2019.12.039

    Article  PubMed  Google Scholar 

  41. Lyle AN, Raaz U (2017) Killing me un-softly: causes and mechanisms of arterial stiffness recent highlights of ATVB: early career committee contribution. Arterioscler Thromb Vasc Biol 37:e1–e11. https://doi.org/10.1161/ATVBAHA.116.308563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lacolley P, Regnault V, Segers P et al (2017) Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol Rev 97:1555–1617. https://doi.org/10.1152/physrev.00003.2017

    Article  CAS  PubMed  Google Scholar 

  43. Donato AJ, Machin DR, Lesniewski LA (2018) Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res 123:825–848. https://doi.org/10.1161/CIRCRESAHA.118.312563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chirinos JA, Segers P, Hughes T et al (2019) Large artery stiffness in health and disease: JACC state-of-the-art review. J Am Coll Cardiol 74:1237–1263. https://doi.org/10.1016/j.jacc.2019.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yang T, Sun Y, Lu Z et al (2017) The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res Rev 34:15–29. https://doi.org/10.1016/j.arr.2016.09.007

    Article  PubMed  Google Scholar 

  46. Kim ED, Tanaka H, Ballew SH et al (2018) Associations between kidney disease measures and regional pulse wave velocity in a large community-based cohort: the atherosclerosis risk in communities (ARIC) study. Am J Kidney Dis 72:682–690. https://doi.org/10.1053/j.ajkd.2018.04.018

    Article  PubMed  Google Scholar 

  47. Landers-Ramos RQ, Prior SJ (2018) The microvasculature and skeletal muscle health in aging. Exerc Sport Sci Rev 46:172–179. https://doi.org/10.1249/JES.0000000000000151

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim ED, Ballew SH, Tanaka H et al (2019) Short-term prognostic impact of arterial stiffness in older adults without prevalent cardiovascular disease. Hypertension 74:1373–1382. https://doi.org/10.1161/HYPERTENSIONAHA.119.13496

    Article  CAS  PubMed  Google Scholar 

  49. Nilsson ED, Elmståhl S, Minthon L et al (2014) Nonlinear association between pulse wave velocity and cognitive function: a population-based study. J Hypertens 32:2152. https://doi.org/10.1097/HJH.0000000000000329

    Article  CAS  PubMed  Google Scholar 

  50. Chen Y, Shen F, Liu J et al (2017) Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke. Stroke Vasc Neurol 2:65–72. https://doi.org/10.1136/svn-2016-000045

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cobos-Palacios L, Ruiz-Moreno MI, Muñoz-Ubeda M et al (2022) A healthy lifestyle is associated with lower arterial stiffness in a metabolically healthy elderly population with overweight or obesity. J Hypertens 40:1808–1814. https://doi.org/10.1097/HJH.0000000000003227

    Article  CAS  PubMed  Google Scholar 

  52. Jayanama K, Theou O, Godin J et al (2021) Relationship between diet quality scores and the risk of frailty and mortality in adults across a wide age spectrum. BMC Med 19:64. https://doi.org/10.1186/s12916-021-01918-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ward RE, Orkaby AR, Chen J et al (2020) Association between diet quality and frailty prevalence in the physicians’ health study. J Am Geriatr Soc 68:770–776. https://doi.org/10.1111/jgs.16286

    Article  PubMed  Google Scholar 

  54. Maddock J, Ziauddeen N, Ambrosini GL et al (2018) Adherence to a Dietary Approaches to Stop Hypertension (DASH)-type diet over the life course and associated vascular function: a study based on the MRC 1946 British birth cohort. Br J Nutr 119:581–589. https://doi.org/10.1017/S0007114517003877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nordstrand N, Gjevestad E, Hertel JK et al (2013) Arterial stiffness, lifestyle intervention and a low-calorie diet in morbidly obese patients—a nonrandomized clinical trial. Obesity (Silver Spring) 21:690–697. https://doi.org/10.1002/oby.20099

    Article  CAS  PubMed  Google Scholar 

  56. Liu P, Li Y, Ma L (2021) Caloric restriction may help delay the onset of frailty and support frailty management. Front Nutr 8:731356. https://doi.org/10.3389/fnut.2021.731356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Millar CL, Dufour AB, Hebert JR et al (2022) Association of pro-inflammatory diet with frailty onset among adults with and without depressive symptoms: results from the Framingham Offspring Study. J Gerontol A Biol Sci Med Sci. https://doi.org/10.1093/gerona/glac140

    Article  PubMed Central  Google Scholar 

  58. Camargo-Ramos CM, Correa-Bautista JE, Correa-Rodríguez M et al (2017) Dietary inflammatory index and cardiometabolic risk parameters in overweight and sedentary subjects. Int J Environ Res Public Health 14:1104. https://doi.org/10.3390/ijerph14101104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all contributors and participants of NAHNES.

Funding

This work was supported by the National Natural Science Foundation of China (Grant no. 81974566) and the Jinan “University 20” Project (Grant no. 2020GXRC017).

Author information

Authors and Affiliations

Authors

Contributions

YLH conducted analyses and wrote the article. XJW, JMH, LZ, LL, and YL collected and assembled the data. YLH and YLL conceived the study design. All authors have contributed to the interpretation of the results and have critically revised the content of the manuscript. All authors agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Yunlun Li.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the National Center for Health Statistics (NCHS) Research Ethics Review Board (Protocols #98-12, #2005-06, #2011-17, and #2018-01).

Statement of human and animal rights

This study does not include any animal studies conducted by the authors and adheres to the guidelines for conducting research involving human participants.

Consent to participate

NHANES is a public dataset and all participants provided a written informed consent.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Huan, J., Wang, X. et al. Association of estimated carotid-femoral pulse wave velocity with frailty in middle-aged and older adults with cardiometabolic disease. Aging Clin Exp Res 35, 2425–2436 (2023). https://doi.org/10.1007/s40520-023-02556-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02556-y

Keywords

Navigation