Skip to main content
Log in

The association between visceral adiposity index and leukocyte telomere length in adults: results from National Health and Nutrition Examination Survey

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Leukocyte telomere length (LTL) is a robust marker of biological aging, which is associated with obesity. Recently, the visceral adiposity index (VAI) has been proposed as an indicator of adipose distribution and function.

Objective

To evaluated the association between VAI and LTL in adult Americans.

Methods

There were 3193 participants in U.S. National Health and Nutrition Examination Surveys (1999–2002) included in this analysis. LTL was measured using quantitative PCR (qPCR) and expressed as telomere to single-gene copy ratio (T/S ratio). We performed multiple logistic regression models to explore the association between VAI and LTL by adjusting for potential confounders.

Results

Among all participants, VAI was associated with the shorter LTL (β:  – 14.81, 95% CI  – 22.28 to  – 7.34, p < 0.001). There were significant differences of LTL in VAI tertiles (p < 0.001). Participants in the higher VAI tertile had the shorter LTL (1.26 ≤ VAI < 2.46: β =  – 130.16, 95% CI [ – 183.44,  – 76.87]; VAI ≥ 2.46: β =  – 216.12, 95% CI [ – 216.12,  – 81.42], p for trend: < 0.001) comparing with the lower VAI tertile. We also found a non-linear relationship between VAI and LTL. VAI was negatively correlated with LTL when VAI was less than 2.84.

Conclusions

The present study demonstrates that VAI is independently associated with telomere length. A higher VAI is associated with shorter LTL. The results suggest that VAI may provide prediction for LTL and account for accelerating the biological aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the results of this research are available from the corresponding author upon reasonable request.

References

  1. Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579. https://doi.org/10.1152/physrev.00026.2007

    Article  CAS  PubMed  Google Scholar 

  2. Müezzinler A, Zaineddin AK, Brenner H (2013) A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev 12:509–519. https://doi.org/10.1016/j.arr.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  3. Haycock PC, Heydon EE, Kaptoge S et al (2014) Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 349:g4227. https://doi.org/10.1136/bmj.g4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salpea KD, Talmud PJ, Cooper JA et al (2010) Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis 209:42–50. https://doi.org/10.1016/j.atherosclerosis.2009.09.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cohen S, Janicki-Deverts D, Turner RB et al (2013) Association between telomere length and experimentally induced upper respiratory viral infection in healthy adults. JAMA 309:699–705. https://doi.org/10.1001/jama.2013.613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Zhao Q, Zhu W et al (2017) The association of telomere length in peripheral blood cells with cancer risk: a systematic review and meta-analysis of prospective studies. Cancer Epidem Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 26:1381–1390. https://doi.org/10.1158/1055-9965.EPI-16-0968

    Article  CAS  Google Scholar 

  7. Wentzensen IM, Mirabello L, Pfeiffer RM et al (2011) The association of telomere length and cancer: a meta-analysis. Cancer Epidem Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 20:1238–1250. https://doi.org/10.1158/1055-9965.EPI-11-0005

    Article  CAS  Google Scholar 

  8. Zhang J, Rane G, Dai X et al (2016) Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res Rev 25:55–69. https://doi.org/10.1016/j.arr.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  9. Masi S, D’Aiuto F, Cooper J et al (2016) Telomere length, antioxidant status and incidence of ischaemic heart disease in type 2 diabetes. Int J Cardiol 216:159–164. https://doi.org/10.1016/j.ijcard.2016.04.130

    Article  PubMed  PubMed Central  Google Scholar 

  10. Saltiel AR, Olefsky JM (2017) Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 127:1–4. https://doi.org/10.1172/JCI92035

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vona R, Gambardella L, Cittadini C et al (2019) Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid Med Cell Longev 2019:8267234. https://doi.org/10.1155/2019/8267234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee M, Martin H, Firpo MA et al (2011) Inverse association between adiposity and telomere length: The fels longitudinal study. Am J Hum Biol Off J Hum Biol Counc 23:100–106. https://doi.org/10.1002/ajhb.21109

    Article  CAS  Google Scholar 

  13. Batsis JA, Mackenzie TA, Vasquez E et al (2005) (2018) Association of adiposity, telomere length and mortality: data from the NHANES 1999–2002. Int J Obes 42:198–204. https://doi.org/10.1038/ijo.2017.202

    Article  CAS  Google Scholar 

  14. Abbasalizad-Farhangi M (2021) Central obesity accelerates leukocyte telomere length (LTL) shortening in apparently healthy adults: A systematic review and meta-analysis. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1971155

    Article  PubMed  Google Scholar 

  15. Mundstock E, Sarria EE, Zatti H et al (2015) Effect of obesity on telomere length: Systematic review and meta-analysis. Obes Silver Spring Md 23:2165–2174. https://doi.org/10.1002/oby.21183

    Article  Google Scholar 

  16. Hegazi RAF, Sutton-Tyrrell K, Evans RW et al (2003) Relationship of adiposity to subclinical atherosclerosis in obese patients with type 2 diabetes. Obes Res 11:1597–1605. https://doi.org/10.1038/oby.2003.212

    Article  PubMed  Google Scholar 

  17. Janghorbani M, Salamat MR, Aminorroaya A et al (2017) Utility of the visceral adiposity index and hypertriglyceridemic waist phenotype for predicting incident hypertension. Endocrinol Metab Seoul Korea 32:221–229. https://doi.org/10.3803/EnM.2017.32.2.221

    Article  CAS  Google Scholar 

  18. Son D-H, Ha H-S, Lee HS et al (2021) Association of the new visceral adiposity index with coronary artery calcification and arterial stiffness in Korean population. Nutr Metab Cardiovasc Dis NMCD 31:1774–1781. https://doi.org/10.1016/j.numecd.2021.02.032

    Article  CAS  PubMed  Google Scholar 

  19. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47. https://doi.org/10.1093/nar/30.10.e47

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rehkopf DH, Needham BL, Lin J et al (2016) Leukocyte telomere length in relation to 17 biomarkers of cardiovascular disease risk: a cross-sectional study of US adults. PLoS Med 13:e1002188. https://doi.org/10.1371/journal.pmed.1002188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bosello O, Vanzo A (2021) Obesity paradox and aging. Eat Weight Disord EWD 26:27–35. https://doi.org/10.1007/s40519-019-00815-4

    Article  PubMed  Google Scholar 

  22. Kammerlander AA, Lyass A, Mahoney TF et al (2021) Sex differences in the associations of visceral adipose tissue and cardiometabolic and cardiovascular disease risk: the framingham heart study. J Am Heart Assoc 10:e019968. https://doi.org/10.1161/JAHA.120.019968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanders JL, Newman AB (2013) Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev 35:112–131. https://doi.org/10.1093/epirev/mxs008

    Article  PubMed  PubMed Central  Google Scholar 

  24. German CA, Laughey B, Bertoni AG et al (2020) Associations between BMI, waist circumference, central obesity and outcomes in type II diabetes mellitus: The ACCORD Trial. J Diabetes Compl 34:107499. https://doi.org/10.1016/j.jdiacomp.2019.107499

    Article  Google Scholar 

  25. Njajou OT, Cawthon RM, Blackburn EH et al (2005) (2012) Shorter telomeres are associated with obesity and weight gain in the elderly. Int J Obes 36:1176–1179. https://doi.org/10.1038/ijo.2011.196

    Article  Google Scholar 

  26. Müezzinler A, Mons U, Dieffenbach AK et al (2016) Body mass index and leukocyte telomere length dynamics among older adults: Results from the ESTHER cohort. Exp Gerontol 74:1–8. https://doi.org/10.1016/j.exger.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  27. Diaz VA, Mainous AG, Player MS et al (2005) (2010) Telomere length and adiposity in a racially diverse sample. Int J Obes 34:261–265. https://doi.org/10.1038/ijo.2009.198

    Article  Google Scholar 

  28. MacEneaney OJ, Kushner EJ, Westby CM et al (2010) Endothelial progenitor cell function, apoptosis, and telomere length in overweight/obese humans. Obes Silver Spring Md 18:1677–1682. https://doi.org/10.1038/oby.2009.494

    Article  CAS  Google Scholar 

  29. Amato MC, Giordano C, Galia M et al (2010) Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 33:920–922. https://doi.org/10.2337/dc09-1825

    Article  PubMed  PubMed Central  Google Scholar 

  30. Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7:e330-341. https://doi.org/10.1016/j.orcp.2013.05.004

    Article  PubMed  Google Scholar 

  31. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344. https://doi.org/10.1016/s0968-0004(02)02110-2

    Article  Google Scholar 

  32. Erusalimsky JD (2020) Oxidative stress, telomeres and cellular senescence: What non-drug interventions might break the link? Free Radic Biol Med 150:87–95. https://doi.org/10.1016/j.freeradbiomed.2020.02.008

    Article  CAS  PubMed  Google Scholar 

  33. Vaiserman A, Krasnienkov D (2020) Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives. Front Genet 11:630186. https://doi.org/10.3389/fgene.2020.630186

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 81870310 and 81200194).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ contributions were as follows—conception and design of the research: YF, JG, MC. Analysis and interpretation of data: YF, JG, YG. Assistant in data analysis: XZ and HC. Draft the manuscript: YF. Assistant in the manuscript preparation: JZ, PS. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jie Gao or Mulei Chen.

Ethics declarations

Conflict of interest

None to declare.

Ethical approval

NHANES program was approved by the NCHS Ethics Review Board.

Informed consent

All the participants provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Guo, Y., Zhong, J. et al. The association between visceral adiposity index and leukocyte telomere length in adults: results from National Health and Nutrition Examination Survey. Aging Clin Exp Res 34, 2177–2183 (2022). https://doi.org/10.1007/s40520-022-02168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-022-02168-y

Keywords

Navigation