Skip to main content

Advertisement

Log in

Association between levels of high-sensitivity C-reactive protein in plasma and freezing of gait in Parkinson's disease

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

This study explored the potential relationship between levels of high-sensitivity C-reactive protein (hs-CRP) in plasma and freezing of gait (FOG) in Parkinson's disease (PD) in China. A total of 72 healthy subjects, 62 PD patients with FOG, and 83 PD patients without FOG from our center were enrolled in this prospective study. Patients with FOG showed significantly higher hs-CRP levels than controls, but patients without FOG did not. Binary logistic regression analysis identified levels of hs-CRP in plasma to be an independent risk factor for FOG among the patients in our cohort (OR 6.371, 95% CI 2.589–15.678, p < 0.001). In fact, a cut-off level of 0.935 mg/L distinguished patients with or without FOG [area under the ROC curve (AUC) = 0.908, sensitivity 87.1%, specificity 89.2%]. Our study suggests that high levels of hs-CRP in plasma are associated with the occurrence of FOG in PD. The pooled data combined with a previous study carried out in Spain also indicate a positive association between plasma hs-CRP levels and FOG in PD. However, more research is still needed to verify the plasma hs-CRP as a potential biomarker of FOG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang ZX, Roman GC, Hong Z et al (2005) Parkinson’s disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet 365:595–597. https://doi.org/10.1016/S0140-6736(05)17909-4

    Article  PubMed  Google Scholar 

  2. Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424

    Article  PubMed  Google Scholar 

  3. Adams B, Nunes JM, Page MJ et al (2019) Parkinson’s disease: a systemic inflammatory disease accompanied by bacterial inflammagens. Front Aging Neurosci 11:210. https://doi.org/10.3389/fnagi.2019.00210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dorszewska J, Kowalska M, Prendecki M et al (2021) Oxidative stress factors in Parkinson’s disease. Neural Regen Res 16:1383–1391. https://doi.org/10.4103/1673-5374.300980

    Article  PubMed  Google Scholar 

  5. Wei Z, Li X, Liu Q et al (2018) Oxidative stress in Parkinson’s disease: a systematic review and meta-analysis. Front Mol Neurosci 11:236–236. https://doi.org/10.3389/fnmol.2018.00236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454. https://doi.org/10.1056/NEJM199902113400607

    Article  CAS  PubMed  Google Scholar 

  7. Luan YY, Yao YM (2018) The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Front Immunol 9:1302. https://doi.org/10.3389/fimmu.2018.01302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Song I-U, Kim J-S, Chung S-W et al (2009) Is there an association between the level of high-sensitivity C-reactive protein and idiopathic Parkinson’s disease? A comparison of Parkinson’s disease patients, disease controls and healthy individuals. Eur Neurol 62:99–104. https://doi.org/10.1159/000222780

    Article  CAS  PubMed  Google Scholar 

  9. Qiu X, Xiao Y, Wu J et al (2019) C-Reactive protein and risk of Parkinson’s disease: a systematic review and meta-analysis. Front Neurol 10:384. https://doi.org/10.3389/fneur.2019.00384

    Article  PubMed  PubMed Central  Google Scholar 

  10. Verghese J, Holtzer R, Lipton RB et al (2012) High-sensitivity C-reactive protein and mobility disability in older adults. Age Ageing 41:541–545. https://doi.org/10.1093/ageing/afs038

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kositsawat J, Barry LC, Kuchel GA (2013) C-reactive protein, vitamin D deficiency, and slow gait speed. J Am Geriatr Soc 61:1574–1579. https://doi.org/10.1111/jgs.12403

    Article  PubMed  Google Scholar 

  12. Sousa ACPA, Zunzunegui M-V, Li A et al (2016) Association between C-reactive protein and physical performance in older populations: results from the International Mobility in Aging Study (IMIAS). Age Ageing 45:274–280. https://doi.org/10.1093/ageing/afv202

    Article  PubMed  Google Scholar 

  13. Nutt JG, Bloem BR, Giladi N et al (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet 10:734–744. https://doi.org/10.1016/S1474-4422(11)70143-0

    Article  Google Scholar 

  14. Kader M, Ullen S, Iwarsson S et al (2017) Factors contributing to perceived walking difficulties in people with Parkinson’s disease. J Parkinsons Dis 7:397–407. https://doi.org/10.3233/JPD-161034

    Article  PubMed  Google Scholar 

  15. Santos-Garcia D, De Deus FT, Suarez Castro E et al (2019) High ultrasensitive serum C-reactive protein may be related to freezing of gait in Parkinson’s disease patients. J Neural Transm (Vienna) 126:1599–1608. https://doi.org/10.1007/s00702-019-02096-8

    Article  CAS  Google Scholar 

  16. Goetz CG (2010) Movement disorder society-unified Parkinson’s disease rating scale (MDS-UPDRS): a new scale for the evaluation of Parkinson’s disease. Rev Neurol (Paris) 166:1–4. https://doi.org/10.1016/j.neurol.2009.09.001

    Article  CAS  Google Scholar 

  17. Hoehn MM (1983) Parkinsonism treated with levodopa: progression and mortality. J Neural Transm Suppl 19:253

    Google Scholar 

  18. Dubois B, Burn D, Goetz C et al (2007) Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord 22:2314–2324. https://doi.org/10.1002/mds.21844

    Article  PubMed  Google Scholar 

  19. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62. https://doi.org/10.1136/jnnp.23.1.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amboni M, Stocchi F, Abbruzzese G et al (2015) Prevalence and associated features of self-reported freezing of gait in Parkinson disease: the DEEP FOG study. Parkinsonism Relat Disord 21:644–649. https://doi.org/10.1016/j.parkreldis.2015.03.028

    Article  CAS  PubMed  Google Scholar 

  21. Onyou H (2013) Role of oxidative stress in Parkinson’s Disease. Exp Neurobiol 22:11–17. https://doi.org/10.5607/en.2013.22.1.11

    Article  Google Scholar 

  22. Blesa J, Trigo-Damas I, Quiroga-Varela A et al (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91–91. https://doi.org/10.3389/fnana.2015.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rocha N, De Miranda A, Teixeira A (2015) Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory based therapies. Biomed Res Int 2015:628192–628192. https://doi.org/10.1155/2015/628192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scalzo P, Kümmer A, Cardoso F et al (2010) Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett 468:56–58. https://doi.org/10.1016/j.neulet.2009.10.062

    Article  CAS  PubMed  Google Scholar 

  25. Emberson JR, Whincup PH, Morris RW et al (2004) Extent of regression dilution for established and novel coronary risk factors: results from the British Regional Heart Study. Eur J Cardiovasc Prev Rehabil 11:125–134. https://doi.org/10.1097/01.hjr.0000114967.39211.e5

    Article  PubMed  Google Scholar 

  26. Kuhlmann CR, Librizzi L, Closhen D et al (2009) Mechanisms of C-reactive protein-induced blood-brain barrier disruption. Stroke 40:1458–1466. https://doi.org/10.1161/STROKEAHA.108.535930

    Article  CAS  PubMed  Google Scholar 

  27. Closhen D, Bender B, Luhmann HJ et al (2010) CRP-induced levels of oxidative stress are higher in brain than aortic endothelial cells. Cytokine 50:117–120. https://doi.org/10.1016/j.cyto.2010.02.011

    Article  CAS  PubMed  Google Scholar 

  28. Li YN, Qin XJ, Kuang F et al (2008) Alterations of Fc gamma receptor I and Toll-like receptor 4 mediate the antiinflammatory actions of microglia and astrocytes after adrenaline-induced blood–brain barrier opening in rats. J Neurosci Res 86:3556–3565

    Article  CAS  Google Scholar 

  29. Juma WM, Lira A, Marzuk A et al (2011) C-reactive protein expression in a rodent model of chronic cerebral hypoperfusion. Brain Res 1414:85–93. https://doi.org/10.1016/j.brainres.2011.07.047

    Article  CAS  PubMed  Google Scholar 

  30. Moghaddam HS, Valitabar Z, Ashraf-Ganjouei A et al (2018) Cerebrospinal fluid C-reactive protein in Parkinson’s disease: associations with motor and non-motor symptoms. NeuroMol Med 20:376–385. https://doi.org/10.1007/s12017-018-8499-5

    Article  CAS  Google Scholar 

  31. Jin H, Gu H, Mao C et al (2020) Association of inflammatory factors and aging in Parkinson’s disease. Neurosci Lett 736:135259–135259. https://doi.org/10.1016/j.neulet.2020.135259

    Article  CAS  PubMed  Google Scholar 

  32. Baran A, Bulut M, Kaya MC et al (2019) High-sensitivity C-reactive protein and high mobility group box-1 levels in Parkinson’s disease. Neurol Sci 40:167–173. https://doi.org/10.1007/s10072-018-3611-z

    Article  PubMed  Google Scholar 

  33. Sawada H, Oeda T, Umemura A et al (2015) Baseline C-reactive protein levels and life prognosis in Parkinson disease. PLoS ONE 10:e0134118. https://doi.org/10.1371/journal.pone.0134118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ou R, Cao B, Wei Q et al (2017) Serum uric acid levels and freezing of gait in Parkinson’s disease. Neurol Sci 38:955–960. https://doi.org/10.1007/s10072-017-2871-3

    Article  PubMed  Google Scholar 

  35. Beavers DP, Kritchevsky SB, Gill TM et al (2021) Elevated IL-6 and CRP levels are associated with incident self-reported major mobility disability: a pooled analysis of older adults with slow gait speed. J Gerontol A Biol Sci Med Sci 76:2293–2299. https://doi.org/10.1093/gerona/glab093

    Article  PubMed  PubMed Central  Google Scholar 

  36. Renner SW, Qiao Y, Gmelin T et al (2021) Association of fatigue, inflammation, and physical activity on gait speed: the Long Life Family Study. Aging Clin Exp Res. https://doi.org/10.1007/s40520-021-01923-x

    Article  PubMed  Google Scholar 

  37. Umemura A, Oeda T, Yamamoto K et al (2015) Baseline plasma C-reactive protein concentrations and motor prognosis in Parkinson disease. PLoS ONE 10:e0136722. https://doi.org/10.1371/journal.pone.0136722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gan J, Liu W, Cao X et al (2021) Prevalence and clinical features of FOG in Chinese PD patients, a multicenter and cross-sectional clinical study. Front Neurol 12:568841. https://doi.org/10.3389/fneur.2021.568841

    Article  PubMed  PubMed Central  Google Scholar 

  39. Martens KE, Hall JM, Gilat M et al (2016) Anxiety is associated with freezing of gait and attentional set-shifting in Parkinson’s disease: a new perspective for early intervention. Gait Posture 49:431–436. https://doi.org/10.1016/j.gaitpost.2016.07.182

    Article  PubMed  Google Scholar 

  40. Lafer B, Renshaw PF, Sachs GS (1997) Major depression and the basal ganglia. Psychiatr Clin N Am 20:885–896. https://doi.org/10.1016/s0193-953x(05)70350-6

    Article  CAS  Google Scholar 

  41. Martens KAE, Lewis SJ (2017) Pathology of behavior in PD: what is known and what is not? J Neurol Sci 374:9–16. https://doi.org/10.1016/j.jns.2016.12.062

    Article  Google Scholar 

  42. Lewis SJ, Barker RA (2009) A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 15:333–338. https://doi.org/10.1016/j.parkreldis.2008.08.006

    Article  PubMed  Google Scholar 

  43. Giladi N, Hausdorff JM (2006) The role of mental function in the pathogenesis of freezing of gait in Parkinson’s disease. J Neurol Sci 248:173–176. https://doi.org/10.1016/j.jns.2006.05.015

    Article  PubMed  Google Scholar 

  44. Lieberman A (2006) Are freezing of gait (FOG) and panic related? J Neurol Sci 248:219–222. https://doi.org/10.1016/j.jns.2006.05.023

    Article  PubMed  Google Scholar 

  45. Herman T, Shema-Shiratzky S, Arie L et al (2019) Depressive symptoms may increase the risk of the future development of freezing of gait in patients with Parkinson’s disease: findings from a 5-year prospective study. Parkinsonism Relat Disord 60:98–104. https://doi.org/10.1016/j.parkreldis.2018.09.013

    Article  PubMed  Google Scholar 

  46. Nonnekes J, Snijders AH, Nutt JG et al (2015) Freezing of gait: a practical approach to management. Lancet Neurol 14:768–778. https://doi.org/10.1016/S1474-4422(15)00041-1

    Article  PubMed  Google Scholar 

  47. Choi S-M, Jung H-J, Yoon G-J et al (2019) Factors associated with freezing of gait in patients with Parkinson’s disease. Neurol Sci 40:293–298. https://doi.org/10.1007/s10072-018-3625-6

    Article  PubMed  Google Scholar 

  48. Moore O, Peretz C, Giladi N (2007) Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait. Mov Disord 22:2192–2195. https://doi.org/10.1002/mds.21659

    Article  PubMed  Google Scholar 

  49. Macht M, Kaussner Y, Möller JC et al (2007) Predictors of freezing in Parkinson’s disease: a survey of 6,620 patients. Mov Disord 22:953–956. https://doi.org/10.1002/mds.21458

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients with Parkinson's disease and the healthy control group for their participation in our study.

Funding

This research was supported by Yunnan Province Clinical Research Center for Neurological Disease(202002AA100204), National Natural Science Foundation of China [grant numbers: 81960242], Applied Basic Research Foundation of Yunnan Province[grant numbers: 202101AY070001-115], Yunnan Province Clinical Research Center for Geriatric Disease [grant number: 202102AA310069].

Author information

Authors and Affiliations

Authors

Contributions

JL contributed to the acquisition of the data, statistical analysis, and interpretation of the data, and drafted the manuscript. XY contributed to the study concept and design, acquisition of the data, statistical analysis, and critical revision of the manuscript for important intellectual content. WY, CZ, YZ, MG, BL and HR contributed to the acquisition of the data and clinical assessment.

Corresponding author

Correspondence to Xinglong Yang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report. The study does not present any potential conflicts.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards declaration and its later amendments or comparable ethical standards.

Consent to participate

Written informed consent was obtained from all patients and their families for their anonymized clinical data to be published for research purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yin, W., Zhou, C. et al. Association between levels of high-sensitivity C-reactive protein in plasma and freezing of gait in Parkinson's disease. Aging Clin Exp Res 34, 1865–1872 (2022). https://doi.org/10.1007/s40520-022-02134-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-022-02134-8

Keywords

Navigation