Skip to main content

Advertisement

Log in

Vitamin E and Alzheimer’s disease: the mediating role of cellular aging

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Vitamin E represents a potent antioxidant and anti-inflammatory system, playing a role in Alzheimer’s disease (AD). Different plasma concentrations of the forms of vitamin E are observed in AD compared to cognitively healthy subjects.

Aim

Since these modifications may modulate the markers of oxidative stress and cellular aging, we aim to explore the relationship between vitamin E forms and leukocyte telomere length (LTL) in AD.

Methods

53 AD subjects and 40 cognitively healthy controls (CTs) were enrolled. The vitamin E forms (α-, β-, γ- and δ-tocopherol, α-, β-, γ- and δ-tocotrienol), the ratio of α-tocopherylquinone/α-tocopherol and 5-nitro-γ-tocopherol/γ-tocopherol (markers of oxidative/nitrosative damage) and LTL were measured.

Results and discussion

Regression model was used to explore the associations of vitamin E forms and LTL with AD. The interaction of LTL in the association between vitamin E forms and AD was tested. AD subjects showed significantly lower concentrations of α-, β-, γ- and δ-tocopherol, α- and δ-tocotrienol, total tocopherols, total tocotrienols and total vitamin E compared to CTs. AD subjects showed higher values of nitrosative/oxidative damage. The adjusted analyses confirmed a significant relationship of AD with plasma concentrations of α- and β-tocopherols, δ-tocotrienol, total tocopherols, total tocotrienol, total vitamin E and oxidative/nitrosative damage. However, nitrosative damage was significantly associated with AD only in subjects with higher LTL and not in those expressing marked cellular aging.

Conclusions

Our study confirms the role of vitamin E in AD pathology and indicates that nitrosative damage influences the association with AD only in subjects characterized by longer LTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prince M, Ali GC, Guerchet M et al (2016) Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther 8:23. https://doi.org/10.1186/s13195-016-0188-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marseglia A, Xu W, Fratiglioni L et al (2018) Effect of the NU-AGE diet on cognitive functioning in older adults: a randomized controlled trial. Front Physiol 9:349. https://doi.org/10.3389/fphys.2018.00349

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boccardi V, Baroni M, Mangialasche F et al (2016) Vitamin E family: role in the pathogenesis and treatment of Alzheimer’s disease. Alzheimers Dement (N Y) 2:182–191. https://doi.org/10.1016/j.trci.2016.08.002

    Article  Google Scholar 

  4. Tedone E, Arosio B, Gussago C et al (2014) Leukocyte telomere length and prevalence of age-related diseases in semisupercentenarians, centenarians and centenarians’ offspring. Exp Gerontol 58:90–95. https://doi.org/10.1016/j.exger.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  5. Forero DA, Gonzalez-Giraldo Y, Lopez-Quintero C et al (2016) Meta-analysis of telomere length in Alzheimer’s disease. J Gerontol Ser A Biomed Sci Med Sci 71:1069–1073. https://doi.org/10.1093/gerona/glw053

    Article  Google Scholar 

  6. Panossian LA, Porter VR, Valenzuela HF et al (2003) Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiol Aging 24:77–84

    Article  CAS  Google Scholar 

  7. Honig LS, Schupf N, Lee JH et al (2006) Shorter telomeres are associated with mortality in those with APOE epsilon4 and dementia. Ann Neurol 60:181–187. https://doi.org/10.1002/ana.20894

    Article  PubMed  Google Scholar 

  8. Takata Y, Kikukawa M, Hanyu H et al (2012) Association between ApoE phenotypes and telomere erosion in Alzheimer’s disease. J Gerontol Ser A Biomed Sci Med Sci 67:330–335. https://doi.org/10.1093/gerona/glr185

    Article  CAS  Google Scholar 

  9. Tedone E, Arosio B, Colombo F et al (2015) Leukocyte telomere length in Alzheimer’s disease patients with a different rate of progression. J Alzheimers Dis 46:761–769. https://doi.org/10.3233/JAD-142808

    Article  CAS  PubMed  Google Scholar 

  10. Maurya PK, Noto C, Rizzo LB et al (2016) The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 65:134–144. https://doi.org/10.1016/j.pnpbp.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  11. Ahmed W, Lingner J (2018) Impact of oxidative stress on telomere biology. Differentiation 99:21–27. https://doi.org/10.1016/j.diff.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  12. Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127. https://doi.org/10.1016/S1474-4422(10)70223-4

    Article  PubMed  Google Scholar 

  13. Mangialasche F, Solomon A, Kareholt I et al (2013) Serum levels of vitamin E forms and risk of cognitive impairment in a Finnish cohort of older adults. Exp Gerontol 48:1428–1435. https://doi.org/10.1016/j.exger.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  14. Traber MG, Jialal I (2000) Measurement of lipid-soluble vitamins–further adjustment needed? Lancet 355:2013–2014. https://doi.org/10.1016/S0140-6736(00)02345-X

    Article  CAS  PubMed  Google Scholar 

  15. Leonard SW, Bruno RS, Paterson E et al (2003) 5-Nitro-gamma-tocopherol increases in human plasma exposed to cigarette smoke in vitro and in vivo. Free Radic Biol Med 35:1560–1567

    Article  CAS  Google Scholar 

  16. Bruno RS, Traber MG (2006) Vitamin E biokinetics, oxidative stress and cigarette smoking. Pathophysiology 13:143–149. https://doi.org/10.1016/j.pathophys.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  17. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47

    Article  Google Scholar 

  18. Sen CK, Khanna S, Rink C et al (2007) Tocotrienols: the emerging face of natural vitamin E. Vitam Horm 76:203–261. https://doi.org/10.1016/S0083-6729(07)76008-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reiter E, Jiang Q, Christen S (2007) Anti-inflammatory properties of alpha- and gamma-tocopherol. Mol Aspects Med 28:668–691. https://doi.org/10.1016/j.mam.2007.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mangialasche F, Xu W, Kivipelto M et al (2012) Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging 33:2282–2290. https://doi.org/10.1016/j.neurobiolaging.2011.11.019

    Article  CAS  PubMed  Google Scholar 

  21. Jiang Q (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 72:76–90. https://doi.org/10.1016/j.freeradbiomed.2014.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mangialasche F, Polidori MC, Monastero R et al (2009) Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Ageing Res Rev 8:285–305. https://doi.org/10.1016/j.arr.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  23. Williamson KS, Gabbita SP, Mou S et al (2002) The nitration product 5-nitro-gamma-tocopherol is increased in the Alzheimer brain. Nitric Oxide 6:221–227. https://doi.org/10.1006/niox.2001.0399

    Article  CAS  PubMed  Google Scholar 

  24. Smith S (2018) Telomerase can’t handle the stress. Genes Dev 32:597–599. https://doi.org/10.1101/gad.316042.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boccardi V, Razdan N, Kaplunov J et al (2015) Stn1 is critical for telomere maintenance and long-term viability of somatic human cells. Aging Cell 14:372–381. https://doi.org/10.1111/acel.12289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vallabhaneni H, O’Callaghan N, Sidorova J et al (2013) Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects. PLoS Genet 9:e1003639. https://doi.org/10.1371/journal.pgen.1003639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Casati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casati, M., Boccardi, V., Ferri, E. et al. Vitamin E and Alzheimer’s disease: the mediating role of cellular aging. Aging Clin Exp Res 32, 459–464 (2020). https://doi.org/10.1007/s40520-019-01209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-019-01209-3

Keywords

Navigation