Skip to main content

Advertisement

Log in

The association of serum levels of zinc and vitamin D with wasting among Iranian pre-school children

  • Original Article
  • Published:
Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity Aims and scope Submit manuscript

Abstract

Purpose

Wasting is a main indicator of Child’s undernutrition that is associated with several non-communicable diseases and child mortality. This is the first population-based study which evaluated the association of serum zinc and vitamin D levels with wasting in a Middle East region. We also reported the prevalence of vitamin D and zinc deficiencies among Iranian pre-school children aged 6 years.

Methods

This was a multicenter cross-sectional study that included 425 children aged between 5 and 7 years (on average 6 years) with BMI-for-age Z-scores of < − 1 SD resident in urban and rural areas of Iran in the spring of 2012 as part of the National Integrated Micronutrient Survey 2 (NIMS-2). Anthropometric measurements and blood sampling were obtained. The prevalence of vitamin D and zinc deficiencies together with the correlations of these variables with the increase of BMI-for-age Z-scores were evaluated.

Results

The prevalence of vitamin D and zinc deficiencies was 18.8% and 12.7%, respectively. In addition, 31.1% of children were wasted. Children in the second tertile of 25(OH)D levels were less likely to have wasting compared with those in the first tertile in both crude and adjusted models (OR 0.47, 95% CI 0.27–0.83). A significant inverse association was found between serum levels of zinc and wasting (OR 0.57, 95% CI 0.34–0.96); such that after adjusting for confounders, children in the highest tertile of serum zinc had 47% less odds of wasting compared with those in the first tertile (OR 0.53, 95% CI 0.31–0.91).

Conclusion

The prevalence of vitamin D and zinc deficiencies among Iranian pre-school children aged 6 years was 18.8 and 12.7%, respectively. Serum levels of vitamin D and zinc were inversely associated with wasting either before or after controlling for confounders.

Level of evidence

Level III, case–control analytic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang CY, Trehan I, Wang RJ, Thakwalakwa C, Maleta K, Deitchler M et al (2012) Children successfully treated for moderate acute malnutrition remain at risk for malnutrition and death in the subsequent year after recovery1. J Nutr 143(2):215–220. https://doi.org/10.3945/jn.112.168047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Black RE, Allen LH, Bhutta ZA, Caulfield LE, De Onis M, Ezzati M et al (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371(9608):243–260. https://doi.org/10.1016/S0140-6736(07)61690-0

    Article  PubMed  Google Scholar 

  3. Mason JB, Chotard S, Cercone E, Dieterich M, Oliphant NP, Mebrahtu S et al (2010) Identifying priorities for emergency intervention from child wasting and mortality estimates in vulnerable areas of the Horn of Africa. Food Nutr Bull 31(3):S234–S247. https://doi.org/10.1177/15648265100313S303

    Article  PubMed  Google Scholar 

  4. Harding KL, Aguayo VM, Webb P (2018) Factors associated with wasting among children under five years old in South Asia: Implications for action. PloS one 13(7):e0198749. https://doi.org/10.1371/journal.pone.0198749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M et al (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382(9890):427–451. https://doi.org/10.1016/S0140-6736(13)60937-X

    Article  PubMed  Google Scholar 

  6. Bank U (2012) Levels and trends in child malnutrition: UNICEF-WHO-the world bank joint child malnutrition estimates. Washington DC

  7. World Health Organization (2013) Global nutrition policy review: what does it take to scale up nutrition action? WHO

  8. Forrester TE, Badaloo AV, Boyne MS, Osmond C, Thompson D, Green C et al (2012) Prenatal factors contribute to the emergence of kwashiorkor or marasmus in severe undernutrition: evidence for the predictive adaptation model. PLoS One 7(4):e35907. https://doi.org/10.1371/journal.pone.0035907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Francis-Emmanuel PM, Thompson DS, Barnett AT, Osmond C, Byrne CD, Hanson MA et al (2014) Glucose metabolism in adult survivors of severe acute malnutrition. J Clin Endocrinol Metab 99(6):2233–2240. https://doi.org/10.1210/jc.2013-3511

    Article  CAS  PubMed  Google Scholar 

  10. Tennant IA, Barnett AT, Thompson DS, Kips J, Boyne MS, Chung EE et al (2014) Impaired cardiovascular structure and function in adult survivors of severe acute malnutrition. Hypertension 64(3):664–671. https://doi.org/10.1161/HYPERTENSIONAHA.114.03230

    Article  CAS  PubMed  Google Scholar 

  11. Darnton-Hill I, Webb P, Harvey PW, Hunt JM, Dalmiya N, Chopra M et al (2005) Micronutrient deficiencies and gender: social and economic costs. Am J Clin Nutr 81(5):1198S–1205S. https://doi.org/10.1093/ajcn/81.5.1198

    Article  CAS  PubMed  Google Scholar 

  12. Mithal A, Wahl DA, Bonjour J-P, Burckhardt P, Dawson-Hughes B, Eisman JA et al (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 20(11):1807–1820. https://doi.org/10.1007/s00198-009-0954-6

    Article  CAS  PubMed  Google Scholar 

  13. Villena-Esponera MP, Moreno-Rojas R, Molina-Recio G (2019) Food insecurity and the double burden of malnutrition of indigenous refugee Epera Siapidara. J Immigr Minor Health 21(5):1035–1042

    Article  Google Scholar 

  14. Barth-Jaeggi T, Zandberg L, Bahruddinov M, Kiefer S, Rahmarulloev S, Wyss K (2019) Nutritional status of Tajik children and women: transition towards a double burden of malnutrition. Matern Child Nutr 18:1–11. https://doi.org/10.1111/mcn.12886

    Article  Google Scholar 

  15. Nikooyeh B, Abdollahi Z, Hajifaraji M, Alavi-Majd H, Salehi F, Yarparvar AH et al (2017) Vitamin D status, latitude and their associations with some health parameters in children: national food and nutrition Surveillance. J Trop Pediatr 63(1):57–64. https://doi.org/10.1093/tropej/fmw057

    Article  PubMed  Google Scholar 

  16. Neyestani TR, Hajifaraji M, Omidvar N, Eshraghian MR, Shariatzadeh N, Kalayi A et al (2012) High prevalence of vitamin D deficiency in school-age children in Tehran, 2008: a red alert. Public Health Nutr 15(2):324–330. https://doi.org/10.1017/S1368980011000188

    Article  PubMed  Google Scholar 

  17. Neyestani T, Gharavi A, Kalayi A (2008) Iranian diabetics may not be vitamin D deficient more than healthy subjects. Acta Medica Iranica 46(4):337–341

    CAS  Google Scholar 

  18. Salek M, Hashemipour M, Aminorroaya A, Gheiratmand A, Kelishadi R, Ardestani P et al (2008) Vitamin D deficiency among pregnant women and their newborns in Isfahan, Iran. Exp Clin Endocrinol Diabetes 116(06):352–356

    Article  CAS  Google Scholar 

  19. Caprio M, Infante M, Calanchini M, Mammi C, Fabbri A (2017) Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat Weight Disord 22(1):27–41

    Article  Google Scholar 

  20. World Health Organization (2002) The world health report 2002: reducing risks promoting healthy life. WHO, Geneva

    Google Scholar 

  21. Wieringa FT, Dijkhuizen MA, Fiorentino M, Laillou A, Berger J (2015) Determination of zinc status in humans: which indicator should we use? Nutrients 7(5):3252–3263

    Article  CAS  Google Scholar 

  22. Favier AE (1992) Hormonal effects of zinc on growth in children. Biol Trace Element Res 32:383–397

    Article  CAS  Google Scholar 

  23. UNICEF (2011) The state of the world’s children 2011: adolescence-an age of opportunity. UNICEF, New York

    Google Scholar 

  24. Sadeghi O, Hassanzadeh-Keshteli A, Afshar H, Esmaillzadeh A, Adibi P (2019) The association of whole and refined grains consumption with psychological disorders among Iranian adults. Eur J Nutr 58(1):211–225. https://doi.org/10.1007/s00394-017-1585-x

    Article  PubMed  Google Scholar 

  25. Darteh EKM, Acquah E, Kumi-Kyereme A (2014) Correlates of stunting among children in Ghana. BMC Public Health 14(1):504. https://doi.org/10.1186/1471-2458-14-504

    Article  PubMed  PubMed Central  Google Scholar 

  26. Darteh EKM, Acquah E, Darteh F (2017) Why are our children wasting: determinants of wasting among under 5 s in Ghana. Nutr Health 23(3):159–166. https://doi.org/10.1177/0260106017722924

    Article  PubMed  Google Scholar 

  27. Petrou S, Kupek E (2010) Poverty and childhood undernutrition in developing countries: a multi-national cohort study. Soc Sci Med 71(7):1366–1373. https://doi.org/10.1016/j.socscimed.2010.06.038

    Article  PubMed  Google Scholar 

  28. Mansouri M, Abasi R, Nasiri M, Sharifi F, Vesaly S, Sadeghi O et al (2018) Association of vitamin D status with metabolic syndrome and its components: a cross-sectional study in a population of high educated Iranian adults. Diabetes Metab Syndr 12(3):393–398. https://doi.org/10.1016/j.dsx.2018.01.007

    Article  PubMed  Google Scholar 

  29. Sharif Y, Sadeghi O, Dorosty A, Siassi F, Jalali M, Djazayery A et al (2019) Serum Levels of Vitamin D, retinol and zinc in relation to overweight among toddlers: findings from a national study in Iran. Arch Iran Med 22(4):174–181

    PubMed  Google Scholar 

  30. Jones KD, Hachmeister CU, Khasira M, Cox L, Schoenmakers I, Munyi C et al (2018) Vitamin D deficiency causes rickets in an urban informal settlement in Kenya and is associated with malnutrition. Matern Child Nutr. https://doi.org/10.1111/mcn.12452

    Article  PubMed  PubMed Central  Google Scholar 

  31. Askari G, Nasiri M, Mozaffari-Khosravi H, Rezaie M, Bagheri-Bidakhavidi M, Sadeghi O (2017) The effects of folic acid and pyridoxine supplementation on characteristics of migraine attacks in migraine patients with aura: a double-blind, randomized placebo-controlled, clinical trial. Nutrition 38:74–79. https://doi.org/10.1016/j.nut.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  32. Fesharakinia A, Zarban A, Sharifzadeh G-R (2009) Prevalence of zinc deficiency in elementary school children of South Khorasan Province (East Iran). Iran J Pediatr 19(3):249–254

    Google Scholar 

  33. Marasinghe E, Chackrewarthy S, Abeysena C, Rajindrajith S (2015) Micronutrient status and its relationship with nutritional status in preschool children in urban Sri Lanka. Asia Pac J Clin Nutr 24(1):144–151. https://doi.org/10.6133/apjcn.2015.24.1.17

    Article  CAS  PubMed  Google Scholar 

  34. Motadi SA, Mbhenyane XG, Mbhatsani HV, Mabapa NS, Mamabolo RL (2015) Prevalence of iron and zinc deficiencies among preschool children ages 3 to 5 year in Vhembe district, Limpopo province, South Africa. Nutrition 31(3):452–458. https://doi.org/10.1016/j.nut.2014.09.016

    Article  PubMed  Google Scholar 

  35. Nabeta HW, Kasolo J, Kiggundu RK, Kiragga AN, Kiguli S (2015) Serum vitamin D status in children with protein-energy malnutrition admitted to a national referral hospital in Uganda. BMC Res Notes 8(1):418. https://doi.org/10.1186/s13104-015-1395-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nepal AK, Gelal B, Mehta K, Lamsal M, Pokharel PK, Baral N (2014) Plasma zinc levels, anthropometric and socio-demographic characteristics of school children in eastern Nepal. BMC Res Notes 7(1):18. https://doi.org/10.1186/1756-0500-7-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pouraram H, Djazayery A, Mohammad K, Parsaeian M, Abdollahi Z, Motlagh AD et al (2018) Second national integrated micronutrient survey in Iran: study design and preliminary findings. Arch Iran Med 21(4):137–144

    PubMed  Google Scholar 

  38. Jazayeri M, Moradi Y, Rasti A, Nakhjavani M, Kamali M, Baradaran HR (2018) Prevalence of vitamin D deficiency in healthy Iranian children: a systematic review and meta-analysis. Med J Islam Repub Iran 32:83. https://doi.org/10.14196/mjiri.32.83

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kwak H-S, Chung H-J, Cho D-H, Park M-H, Ku E-S, Park EJ et al (2015) Efficacy of the measurement of 25-hydroxyvitamin D2 and D3 levels by using PerkinElmer liquid chromatography-tandem mass spectrometry vitamin D kit compared with DiaSorin radioimmunoassay kit and Elecsys vitamin D total assay. Ann Lab Med 35(2):263–265. https://doi.org/10.3343/alm.2015.35.2.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lips P (2007) Relative value of 25 (OH) D and 1, 25 (OH) 2D measurements. J Bone Miner Res 22(11):1668–1671. https://doi.org/10.1359/jbmr.070716

    Article  CAS  PubMed  Google Scholar 

  41. Meret S, Henkin R (1971) Simultaneous direct estimation by atomic absorption spectrophotometry of copper and zinc in serum, urine, and cerebrospinal fluid. Clin Chem 17(5):369–373

    Article  CAS  Google Scholar 

  42. Smith J, Butrimovitz G, Purdy W (1979) Direct measurement of zinc in plasma by atomic absorption spectroscopy. Clin Chem 25(8):1487–1491

    Article  CAS  Google Scholar 

  43. Blackmore S, Hamilton M, Lee A, Worwood M, Brierley M, Heath A et al (2008) Automated immunoassay methods for ferritin: recovery studies to assess traceability to an international standard. Clin Chem Lab Med 46(10):1450–1457. https://doi.org/10.1515/CCLM.2008.304

    Article  CAS  PubMed  Google Scholar 

  44. Baker RD, Greer FR, Bhatia JJ, Abrams SA et al (2010) Clinical Report-Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics 126(5):1040–1050. https://doi.org/10.1542/peds.2010-2576

    Article  PubMed  Google Scholar 

  45. Onis Md, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85:660–667

    Article  Google Scholar 

  46. Breslau N, Brown GG, DelDotto JE, Kumar S, Ezhuthachan S, Andreski P et al (1996) Psychiatric sequelae of low birth weight at 6 years of age. J Abnorm Child Psychol 24(3):385–400

    Article  CAS  Google Scholar 

  47. Smith DP (1985) Breastfeeding, contraception, and birth intervals in developing countries. Stud Fam Plann 16(3):154–163

    Article  CAS  Google Scholar 

  48. Gunnell D, Whitley E, Upton M, McConnachie A, Smith GD, Watt G (2003) Associations of height, leg length, and lung function with cardiovascular risk factors in the Midspan Family Study. J Epidemiol Community Health 57(2):141–146

    Article  CAS  Google Scholar 

  49. Arthur SS, Nyide B, Soura AB, Kahn K, Weston M, Sankoh O (2015) Tackling malnutrition: a systematic review of 15-year research evidence from INDEPTH health and demographic surveillance systems. Glob Health Action 8(1):28298. https://doi.org/10.3402/gha.v8.28298

    Article  PubMed  Google Scholar 

  50. Mokhtar RR, Holick MF, Sempértegui F, Griffiths JK, Estrella B, Moore LL et al (2017) Vitamin D status is associated with underweight and stunting in children aged 6–36 months residing in the Ecuadorian Andes. Public Health Nutr 22:1–12. https://doi.org/10.1017/S1368980017002816

    Article  Google Scholar 

  51. Voortman T, van den Hooven EH, Heijboer AC, Hofman A, Jaddoe VW, Franco OH (2015) Vitamin D deficiency in school-age children is associated with sociodemographic and lifestyle factors–3. J Nutr 145(4):791–798. https://doi.org/10.3945/jn.114.208280

    Article  CAS  PubMed  Google Scholar 

  52. Lulseged S, Fitwi G (1999) Vitamin D deficiency rickets: socio-demographic and clinical risk factors in children seen at a referral hospital in Addis Ababa. East Afr Med J 76(8):457–461

    CAS  PubMed  Google Scholar 

  53. McGillivray G, Skull SA, Davie G, Kofoed SE, Frydenberg A, Rice J et al (2007) High prevalence of asymptomatic vitamin D and iron deficiency in East African immigrant children and adolescents living in a temperate climate. Arch Dis Child 92(12):1088–1093. https://doi.org/10.1136/adc.2006.112813

    Article  PubMed  PubMed Central  Google Scholar 

  54. Saleem J, Zakar R, Zakar MZ, Belay M, Rowe M, Timms PM et al (2018) High-dose vitamin D3 in the treatment of severe acute malnutrition: a multicenter double-blind randomized controlled trial. Am J Clin Nutr 107(5):725–733

    Article  Google Scholar 

  55. Trilok Kumar G, Sachdev HS, Chellani H, Rehman AM, Singh V, Arora H, Filteau S (2011) Effect of weekly vitamin D supplements on mortality, morbidity, and growth of low birthweight term infants in India up to age 6 months: randomised controlled trial. BMJ 342:d2975

    Article  Google Scholar 

  56. Coussens AK, Wilkinson RJ, Hanifa Y, Nikolayevskyy V, Elkington PT, Islam K, Timms PM, Venton TR, Bothamley GH, Packe GE et al (2012) Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc Natl Acad Sci USA 109:15449–15454

    Article  CAS  Google Scholar 

  57. Attia S, Versloot CJ, Voskuijl W, van Vliet SJ, Di Giovanni V, Zhang L, Richardson S, Bourdon C, Netea MG, Berkley JA et al (2016) Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: an observational cohort study. Am J Clin Nutr 104:1441–1449

    Article  CAS  Google Scholar 

  58. Jones KD, Berkley JA (2014) Severe acute malnutrition and infection. Paediatr Int Child Health 34(Suppl 1):S1–S29

    Article  Google Scholar 

  59. McCarty M, Thomas C (2003) PTH excess may promote weight gain by impeding catecholamine-induced lipolysis-implications for the impact of calcium, vitamin D, and alcohol on body weight. Med Hypotheses 61(5):535–542

    Article  CAS  Google Scholar 

  60. Bouillon R, Van Schoor NM, Gielen E, Boonen S, Mathieu C, Vanderschueren D et al (2013) Optimal vitamin D status: a critical analysis on the basis of evidence-based medicine. J Clin Endocrinol Metab 98(8):E1283–E1304

    Article  CAS  Google Scholar 

  61. Mansouri M, Miri A, Varmaghani M, Abbasi R, Taha P, Ramezani S et al (2019) Vitamin D deficiency in relation to general and abdominal obesity among high educated adults. Eat Weight Disord 24(1):83–90

    Article  Google Scholar 

  62. Zhu XL, Chen ZH, Li Y, Yang PT, Liu L, Wu LX et al (2019) Associations of vitamin D with novel and traditional anthropometric indices according to age and sex: a cross-sectional study in central southern China. Eat Weight Disord 14:1–11. https://doi.org/10.1007/s40519-019-00803-8

    Article  Google Scholar 

  63. Dirks-Naylor AJ, Lennon-Edwards S (2011) The effects of vitamin D on skeletal muscle function and cellular signaling. J Steroid Biochem Mol Biol 125(3–5):159–168. https://doi.org/10.1016/j.jsbmb.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  64. Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE (2014) Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology 155(2):347–357. https://doi.org/10.1210/en.2013-1205

    Article  PubMed  Google Scholar 

  65. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN (2011) 1, 25 (OH) 2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 152(8):2976–2986. https://doi.org/10.1210/en.2011-0159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu E, Pimpin L, Shulkin M, Kranz S, Duggan CP, Mozaffarian D et al (2018) Effect of zinc supplementation on growth outcomes in children under 5 years of age. Nutrients 10(3):37

    Article  Google Scholar 

  67. Amare B, Moges B, Fantahun B, Tafess K, Woldeyohannes D, Yismaw G et al (2012) Micronutrient levels and nutritional status of school children living in Northwest Ethiopia. Nutr J 11(1):108. https://doi.org/10.1186/1475-2891-11-108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dehghani S, Katibeh P, Haghighat M, Moravej H, Asadi S (2011) Prevalence of zinc deficiency in 3–18 years old children in Shiraz-Iran. Iran Red Crescent Med J 13(1):4–8

    CAS  PubMed  PubMed Central  Google Scholar 

  69. McClain C, Stuart M, Kasarskis E, Humphries L (1993) Zinc, appetite regulation and eating disorders. Prog Clin Biol Res 380:47–64

    CAS  PubMed  Google Scholar 

  70. Brzozowska A, Pronczuk A (1985) Relationship between magnesium and zinc levels of the diet and its protein utilization. Ann Nutr Metab 29(4):253–259. https://doi.org/10.1159/000176978

    Article  CAS  PubMed  Google Scholar 

  71. Wada L, King JC (1986) Effect of low zinc intakes on basal metabolic rate, thyroid hormones and protein utilization in adult men. J Nutr 116(6):1045–1053. https://doi.org/10.1093/jn/116.6.1045

    Article  CAS  PubMed  Google Scholar 

  72. Rink L (2000) Zinc and the immune system. Proc Nutr Soc 59(4):541–552

    Article  CAS  Google Scholar 

  73. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130(5):1500S–1508S. https://doi.org/10.1093/jn/130.5.1500S

    Article  CAS  PubMed  Google Scholar 

  74. Clausen T, Dorup I (1998) Micronutrients, minerals and growth control. Role of trace elements for health promotion and disease prevention. Karger Publishers, Basel, pp 84–92

    Book  Google Scholar 

Download references

Acknowledgements

This work is a collaboration of Nutrition Department, Ministry of Health and Medical Education (MOHME), and School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. We also would like to thank the authorities of Tehran University of Medical Sciences, Tehran, Iran, for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Pouraram.

Ethics declarations

Funding

This study was supported by Tehran University of Medical Sciences, Tehran, Iran.

Conflict of interest

Authors declared no personal or financial conflicts of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards, by 1396.3068.

Informed consent

Informed consent was obtained from the parents of children included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri-babadi, P., Sadeghian, M., Sadeghi, O. et al. The association of serum levels of zinc and vitamin D with wasting among Iranian pre-school children. Eat Weight Disord 26, 211–218 (2021). https://doi.org/10.1007/s40519-019-00834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40519-019-00834-1

Keywords

Navigation