Skip to main content

Advertisement

Log in

Interconnected and Complex Electric Power and Transportation Systems: a SWOT Analysis

  • Energy Market (R Sioshansi and A Mousavian, Section Editors)
  • Published:
Current Sustainable/Renewable Energy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This paper provides a SWOT analysis of the Interdependent and Complex Electric Power and Transportation Systems (INTERCEPTS). The SWOT analysis is conducted to highlight the strengths, weaknesses, opportunities, and threats for the safe, secure, and successful implementation and operations of the INTERCEPTS.

Recent Findings

The INTERCEPTS stakeholders need to take advantage of the existing strengths such as the state-of-the-art technology for energy storage and V2G and public awareness on climate change to take advantage of the opportunities such as modern business models for market participants and plan accordingly to eliminate the weaknesses and threats for safe and secure operations of the INTERCEPTS.

Summary

EVs have shown great potential to reduce the green gas emission and fossil fuel usage. The bidirectional flow of energy provided by the Vehicle to Grid (V2G) technology strengthens the renewable energy sources adaption and creates numerous benefits such as grid stability, peak load management, and cost-saving for the stakeholders and market participants. However, the integration of large-scale EVs to the power grid increases the load substantially and may make the power grid exposes to some threats such as overloaded lines or even cyberattacks. The SWOT analysis provides insights for the decision makers of the INTERCEPTS and market participants and puts more emphasis on thoughtful planning and preparedness before full integration of the electric power and transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chapman L. Transport and climate change: a review. J Transp Geogr 2007;15(5):354–367.

    Article  Google Scholar 

  2. NOAA NCEI. 2020. Noaa national centers for environmental information (ncei) us billion-dollar weather and climate disasters. https://www.ncdc.noaa.gov/billions/summary-stats/US/2000-2019.

  3. IEA. 2020. Global ev outlook 2020. https://www.iea.org/reports/global-ev-outlook-2020.

  4. McLaren J, Miller J, O’Shaughnessy E, Wood E, Shapiro E. 2016. Emissions associated with electric vehicle charging: impact of electricity generation mix, charging infrastructure availability, and vehicle type. Technical report, National Renewable Energy Lab. (NREL), Golden, CO (United States).

  5. Holmatov B, Hoekstra AY. The environmental footprint of transport by car using renewable energy. Earth’s Future. 2020;8(2).

  6. Cox B, Mutel CL, Bauer C, Beltran AM, van Vuuren DP. Uncertain environmental footprint of current and future battery electric vehicles. Environ Sci Technol 2018;52(8):4989– 4995.

    Article  Google Scholar 

  7. Ghazinoory S, Abdi M, Azadegan-Mehr M. Swot methodology: a state-of-the-art review for the past, a framework for the future. J Bus Econ Manag 2011;12(1):24–48.

    Article  Google Scholar 

  8. Raslavičius L, Azzopardi B, Keršys A, Starevičius M, Bazaras ž, Makaras R. Electric vehicles challenges and opportunities: Lithuanian review. Renew Sustain Energy Rev 2015;42:786–800.

    Article  Google Scholar 

  9. Thiel C, Tsakalidis A, Jäger-Waldau A. Will electric vehicles be killed (again) or are they the next mobility killer app? Energies 2020;13(7):1828.

    Article  Google Scholar 

  10. Costa E, Horta A, Correia A, Seixas J, Costa G, Sperling D. Diffusion of electric vehicles in Brazil from the stakeholders’ perspective. International Journal of Sustainable Transportation. 2020: 1–14.

  11. •• Kapustin NO, Grushevenko DA. Long-term electric vehicles outlook and their potential impact on electric grid. Energy Policy 2020;137:111103. The authors investigated an outlook on EVs’ demand and their long-term dynamics impact on the power grid.

    Article  Google Scholar 

  12. Lund H, Kempton W. Integration of renewable energy into the transport and electricity sectors through v2g. Energy Policy 2008;36(9):3578–3587.

    Article  Google Scholar 

  13. Short W, Denholm P. 2006. Preliminary assessment of plug-in hybrid electric vehicles on wind energy markets. Technical report National Renewable Energy Lab.(NREL). Golden, CO (United States).

  14. Bullard N. 2019. Electric car price tag shrinks along with battery cost. https://www.bloombergquint.com/view/electric-vehicle-battery-shrinks-and-so-does-the-total-costhttps://www.bloombergquint.com/view/electric-vehicle-battery-shrinks-and-so-does-the-total-cost.

  15. Wolfram P, Lutsey N. Electric vehicles: literature review of technology costs and carbon emissions. The International Council on Clean Transportation: Washington, DC, USA. 2016; 1–23.

  16. Parker N, Breetz HL, Salon D, Conway MW, Williams J, Patterson M. Who saves money buying electric vehicles? heterogeneity in total cost of ownership. Transp Res Part D: Transp Environ 2021;96:102893.

    Article  Google Scholar 

  17. Shahan Z. 2019. Tesla model 3 vs. toyota camry —5 year cost of ownership comparisons. https://cleantechnica.com/2019/09/27/tesla-model-3-vs-toyota-camry-5-year-cost-to-own/https://cleantechnica.com/2019/09/27/tesla-model-3-vs-toyota-camry-5-year-cost-to-own/.

  18. Hockstad L., Hanel L. 2018. Inventory of U.S. green-house gas emissions and sinks. Technical report, Environmental System Science Data Infrastructure for a Virtual Ecosystem.

  19. Sioshansi R, Denholm P. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services. Environ Sci Technol 2009;43(4):1199–1204.

    Article  Google Scholar 

  20. Dunbar P Birnie III. Solar-to-vehicle (s2v) systems for powering commuters of the future. J Power Sources 2009;186(2):539–542.

    Article  Google Scholar 

  21. Tulpule PJ, Marano V, Yurkovich S, Rizzoni G. Economic and environmental impacts of a pv powered workplace parking garage charging station. Appl Energy 2013;108:323–332.

    Article  Google Scholar 

  22. Fitzgerald G, Nelder C, Newcomb J. 2016. Electric vehicles as distributed energy resources. Rocky Mountain Institute, Boulder, CO.

  23. Yi P, Zhu T, Lin G, Zhang Q. Routing renewable energy using electric vehicles in mobile electrical grid. IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems. IEEE; 2013. p. 2013.

  24. Sortomme E, El-Sharkawi MA. Optimal scheduling of vehicle-to-grid energy and ancillary services. IEEE Transactions on Smart Grid 2011;3(1):351–359.

    Article  Google Scholar 

  25. Galus MD, Koch S, Andersson G. Provision of load frequency control by phevs, controllable loads, and a cogeneration unit. IEEE Trans Ind Electron 2011;58(10):4568–4582.

    Article  Google Scholar 

  26. Liu H, Hu Z, Song Y, Lin J. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands. IEEE Trans Power Sys 2013;28(3):3480–3489.

    Article  Google Scholar 

  27. Jia H, Li X, Mu Y, Xu C, Jiang Y, Yu X, Wu J, Dong C. Coordinated control for ev aggregators and power plants in frequency regulation considering time-varying delays. Appl Energy 2018;210:1363–1376.

    Article  Google Scholar 

  28. Pham TN, Trinh H, et al. Load frequency control of power systems with electric vehicles and diverse transmission links using distributed functional observers. IEEE Transactions on Smart Grid 2015;7(1): 238–252.

    Article  Google Scholar 

  29. Khooban M-H, Niknam T, Blaabjerg F, Davari P, Dragicevic T. A robust adaptive load frequency control for micro-grids. ISA Transactions 2016;65:220–229.

    Article  Google Scholar 

  30. Izadkhast S, Garcia-Gonzalez P, Frías P. An aggregate model of plug-in electric vehicles for primary frequency control. IEEE Trans Power Sys 2014;30(3):1475–1482.

    Article  Google Scholar 

  31. Masuta T, Yokoyama A. Supplementary load frequency control by use of a number of both electric vehicles and heat pump water heaters. IEEE Transactions on Smart Grid 2012;3(3):1253–1262.

    Article  Google Scholar 

  32. Cheng L, Chang Y, Huang R. Mitigating voltage problem in distribution system with distributed solar generation using electric vehicles. IEEE Transactions on Sustainable Energy 2015;6(4):1475–1484.

    Article  Google Scholar 

  33. Mitsukuri Y, Hara R, Kita H, Kamiya E, Hiraiwa N, Kogure E. Voltage regulation in distribution system utilizing electric vehicles and communication. PES T&D 2012. IEEE; 2012. p. 1–6.

  34. Clement-Nyns K, Haesen E, Driesen J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Transactions on Power Systems 2009;25(1):371–380.

    Article  Google Scholar 

  35. Deilami S, Masoum AS, Moses PS, Masoum MAS. Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Transactions on Smart Grid 2011;2(3):456–467.

    Article  Google Scholar 

  36. Kisacikoglu MC, Ozpineci B, Tolbert LM. Examination of a phev bidirectional charger system for v2g reactive power compensation. Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE; 2010. p. 2010.

  37. Gandoman FH, Ahmadi A, Sharaf AM, Siano P, Pou J, Hredzak B, Agelidis VG. Review of facts technologies and applications for power quality in smart grids with renewable energy systems. Renew Sustain Energy Rev 2018;82:502–514.

    Article  Google Scholar 

  38. Silvestre C, Sousa DM, Roque A. Reactive power compensation using on board stored energy in electric vehicles. IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society. IEEE; 2012. p. 5227– 5232.

  39. Kesler M, Kisacikoglu MC, Tolbert LM. Vehicle-to-grid reactive power operation using plug-in electric vehicle bidirectional offboard charger. IEEE Trans Ind Electron 2014;61(12):6778–6784.

    Article  Google Scholar 

  40. Kisacikoglu MC, Kesler M, Tolbert LM. Single-phase on-board bidirectional pev charger for v2g reactive power operation. IEEE Trans Smart Grid 2014;6(2):767–775.

    Article  Google Scholar 

  41. Kisacikoglu MC, Ozpineci B, Tolbert LM. Effects of v2g reactive power compensation on the component selection in an ev or phev bidirectional charger. IEEE Energy conversion congress and exposition. IEEE; 2010. p. 2010.

  42. Kisacikoglu MC, Ozpineci B, Tolbert LM. Reactive power operation analysis of a single-phase ev/phev bidirectional battery charger. 8th International Conference on Power Electronics-ECCE Asi. IEEE; 2011. p. 585–592.

  43. Falahi M, Chou H-M, Ehsani M, Xie L, Butler-Purry KL. Potential power quality benefits of electric vehicles. IEEE Trans Sustain Energy 2013;4(4):1016–1023.

    Google Scholar 

  44. Wang M, Mu Y, Jia H, Wu J, Yu X, Qi Y. Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles. Appl Energy 2017;185:1673–1683.

    Article  Google Scholar 

  45. Kisacikoglu MC, Ozpineci B, Tolbert LM. Ev/phev bidirectional charger assessment for v2g reactive power operation. IEEE Transactions on Power Electronics 2013;28(12):5717–5727.

    Article  Google Scholar 

  46. Tan KM, Ramachandaramurthy VK, Yong JY. Integration of electric vehicles in smart grid: a review on vehicle to grid technologies and optimization techniques. Renew Sustain Energy Rev 2016;53:720–732.

    Article  Google Scholar 

  47. Egbue O, Long S. Barriers to widespread adoption of electric vehicles: an analysis of consumer attitudes and perceptions. Energy Policy 2012;48:717–729.

    Article  Google Scholar 

  48. Noel L, de Rubens GZ, Kester J, Sovacool BK. Beyond emissions and economics: Rethinking the co-benefits of electric vehicles (evs) and vehicle-to-grid (v2g). Transp Policy 2018;71:130–137.

    Article  Google Scholar 

  49. Mohammad A, Zamora R, Lie TT. Integration of electric vehicles in the distribution network: a review of pv based electric vehicle modelling. Energies 2020;13(17):4541.

    Article  Google Scholar 

  50. Gohlke D, Zhou Y. 2019. Assessment of light-duty plug-in electric vehicles in the United States, 2010–2018. Technical report, Argonne National Lab.(ANL), Argonne, IL (United States).

  51. Eid C, Koliou E, Valles M, Reneses J, Hakvoort R. 2016. Time-based pricing and electricity demand response: existing barriers and next steps, Vol. 40.

  52. Shao S, Zhang T, Pipattanasomporn M, Rahman S. Impact of tou rates on distribution load shapes in a smart grid with phev penetration. IEEE PES T&D 2010. IEEE; 2010. p. 1–6.

  53. Bin Humayd AS, Bhattacharya K. Impact of pev penetration on distribution system planning considering time-of-use electricity prices. 2014 IEEE PES General Meeting— Conference & Exposition. IEEE; 2014. p. 1–5.

  54. Gao Y, Wang C, Wang Z, Liang H. Research on time-of-use price applying to electric vehicles charging. IEEE PES Innovative Smart Grid Technologies. IEEE; 2012. p. 1–6.

  55. Yang H, Yang S, Xu Y, Cao E, Lai M, Dong Z. Electric vehicle route optimization considering time-of-use electricity price by learnable partheno-genetic algorithm. IEEE Transactions on Smart Grid 2015;6(2):657–666.

    Article  Google Scholar 

  56. Morgan Davis B, Bradley TH. The efficacy of electric vehicle time-of-use rates in guiding plug-in hybrid electric vehicle charging behavior. IEEE Transactions on Smart Grid 2012;3(4):1679–1686.

    Article  Google Scholar 

  57. Hung Y-C, Michailidis G. Modeling and optimization of time-of-use electricity pricing systems. IEEE Transactions on Smart Grid 2018;10(4):4116–4127.

    Article  Google Scholar 

  58. Dubey A, Santoso S, Cloud MP, Waclawiak M. Determining time-of-use schedules for electric vehicle loads: a practical perspective. IEEE Power and Energy Technology Systems Journal 2015;2(1):12–20.

    Article  Google Scholar 

  59. Raghavan SS, Khaligh A. Impact of plug-in hybrid electric vehicle charging on a distribution network in a smart grid environment. IEEE PES Innovative Smart Grid Technologies (ISGT). IEEE; 2012. p. 2012.

  60. Schey S, Scoffield D, Smart J. A first look at the impact of electric vehicle charging on the electric grid in the ev project. World Electric Vehicle Journal 2012;5(3):667–678.

    Article  Google Scholar 

  61. Yang P, Tang G, Nehorai A. A game-theoretic approach for optimal time-of-use electricity pricing. IEEE Transactions on Power Systems 2012;28(2):884–892.

    Article  Google Scholar 

  62. Khalid A, Javaid N, Mateen A, Ilahi M, Saba T, Rehman A. Enhanced time-of-use electricity price rate using game theory. Electronics 2019;8(1):48.

    Article  Google Scholar 

  63. Srinivasan D, Rajgarhia S, Radhakrishnan BM, Sharma A, Khincha HP. Game-theory based dynamic pricing strategies for demand side management in smart grids. Energy 2017;126:132–143.

    Article  Google Scholar 

  64. Ivry P, Yang J, Scott J, Lin Z, Serrano C, Gissing G. 2019. An evaluation of v2g for distribution network harmonic suppression. Conference on Electricity Distribution.

  65. Gómez CJ, Morcos MM. Impact of ev battery chargers on the power quality of distribution systems. IEEE Transactions on Power Delivery 2003;18(3):975–981.

    Article  Google Scholar 

  66. Guo J, Yang J, Lin Z, Serrano C, Cortes AM. Impact analysis of v2g services on ev battery degradation-a review. IEEE Milan PowerTech; 2019. p. 2019.

  67. Zhou C, Qian K, Allan M, Zhou W. Modeling of the cost of ev battery wear due to v2g application in power systems. IEEE Transactions on Energy Conversion 2011;26(4):1041–1050.

    Article  Google Scholar 

  68. Lunz B, Yan Z, Gerschler JB, Sauer DU. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs. Energy Policy 2012;46:511–519.

    Article  Google Scholar 

  69. Yang Q, Li J, Cao W, Li S, Lin J, Huo D, He H. An improved vehicle to the grid method with battery longevity management in a microgrid application. Energy 2020;198:117374.

    Article  Google Scholar 

  70. Uddin K, Jackson T, Widanage WD, Chouchelamane G, Jennings PA, Marco J. On the possibility of extending the lifetime of lithium-ion batteries through optimal v2g facilitated by an integrated vehicle and smart-grid system. Energy 2017;133:710–722.

    Article  Google Scholar 

  71. Elliott M, Swan LG, Dubarry M, Baure G. Degradation of electric vehicle lithium-ion batteries in electricity grid services. Journal of Energy Storage 2020;32:101873.

    Article  Google Scholar 

  72. Baure G, Dubarry M. Durability and reliability of ev batteries under electric utility grid operations: impact of frequency regulation usage on cell degradation. Energies 2020;13(10):2494.

    Article  Google Scholar 

  73. Verzijlbergh RA, Lukszo Z, Slootweg JG, Ilic MD. The impact of controlled electric vehicle charging on residential low voltage networks. International Conference on Networking, Sensing and Control. IEEE; 2011. p. 2011.

  74. Verzijlbergh RA, Grond Marinus OW, Lukszo Z, Slootweg JG, Ilic MD. Network impacts and cost savings of controlled ev charging. IEEE transactions on Smart Grid 2012;3(3):1203–1212.

    Article  Google Scholar 

  75. Divshali PH, Choi BJ. Efficient indirect real-time ev charging method based on imperfect competition market. IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE; 2016. p. 2016.

  76. Kuran MŞ, Viana AC, Iannone L, Kofman D, Mermoud G, Vasseur JP. A smart parking lot management system for scheduling the recharging of electric vehicles. IEEE Transactions on Smart Grid 2015;6(6):2942– 2953.

    Article  Google Scholar 

  77. Weis A, Michalek JJ, Jaramillo P, Lueken R. Emissions and cost implications of controlled electric vehicle charging in the us pjm interconnection. Environmental Science & Technology 2015;49(9):5813–5819.

    Article  Google Scholar 

  78. Kiaee M, Cruden A, Sharkh S. Estimation of cost savings from participation of electric vehicles in vehicle to grid (v2g) schemes. J Mod Power Syst Clean Energy 2015;3(2):249–258.

    Article  Google Scholar 

  79. Kaufmann A. 2017. Vehicle-to-grid business model–entering the Swiss energy market. PhD thesis, Master Thesis, Institute of Economy and Environment, Univ. St Gallen.

  80. • Sovacool BK, Kester J, Noel L, de Rubens GZ. Actors, business models, and innovation activity systems for vehicle-to-grid (v2g) technology: a comprehensive review. Renew Sustain Energy Rev 2020; 131:109963. This paper reviewed the details of V2G business models, identified twelve stakeholder types and corresponding business markets for V2G, and highlighted twelve policy implications.

    Article  Google Scholar 

  81. Høj JCML, Juhl LT, Lindegaard SB. V2g—an economic gamechanger in e-mobility? World Electric Vehicle Journal 2018;9(3):35.

    Article  Google Scholar 

  82. Kempton W, Tomić J. Vehicle-to-grid power fundamentals: Calculating capacity and net revenue. Journal of Power Sources 2005;144(1):268–279.

    Article  Google Scholar 

  83. Han S, Han S. Economic feasibility of v2g frequency regulation in consideration of battery wear. Energies 2013;6(2):748–765.

    Article  Google Scholar 

  84. Arias NB, Hashemi S, Andersen PB, Træholt C, Romero R. Assessment of economic benefits for ev owners participating in the primary frequency regulation markets. Int J Electr Power Energy Sys 2020;120:105985.

    Article  Google Scholar 

  85. Petit M, Perez Y. Vehicle-to-grid in france: what revenues for participation in frequency control? 2013 10th International Conference on the European Energy Market (EEM). IEEE; 2013. p. 1–7.

  86. Noori M, Zhao Y, Onat NC, Gardner S, Tatari O. Light-duty electric vehicles to improve the integrity of the electricity grid through vehicle-to-grid technology: analysis of regional net revenue and emissions savings. Appl Energy 2016;168:146–158.

    Article  Google Scholar 

  87. Quinn C, Zimmerle D, Bradley TH. The effect of communication architecture on the availability, reliability, and economics of plug-in hybrid electric vehicle-to-grid ancillary services. J Power Sources 2010;195(5): 1500–1509.

    Article  Google Scholar 

  88. Huda M, Tokimatsu K, Aziz M. Techno economic analysis of vehicle to grid (v2g) integration as distributed energy resources in Indonesia power system. Energies 2020;13(5):1162.

    Article  Google Scholar 

  89. Guo D, Zhou C. Potential performance analysis and future trend prediction of electric vehicle with v2g/v2h/v2b capability. AIMS Energy 2016;4(22):331–346.

    Article  Google Scholar 

  90. Datta U, Saiprasad N, Kalam A, Shi J, Zayegh A. A price-regulated electric vehicle charge-discharge strategy for g2v, v2h, and v2g. Int J Energy Res 2019;43(2):1032–1042.

    Article  Google Scholar 

  91. Kataoka R, Shichi A, Yamada H, Iwafune Y, Ogimoto K. Comparison of the economic and environmental performance of v2h and residential stationary battery: development of a multi-objective optimization method for homes of ev owners. World Electric Vehicle Journal 2019;10(4):78.

    Article  Google Scholar 

  92. Pang C, Dutta P, Kim S, Kezunovic M, Damnjanovic I. 2010. Phevs as dynamically configurable dispersed energy storage for v2b uses in the smart grid IET.

  93. Pang C, Dutta P, Kezunovic M. Bevs/phevs as dispersed energy storage for v2b uses in the smart grid. IEEE Transactions on Smart Grid 2011;3(1):473–482.

    Article  Google Scholar 

  94. Neubauer J, Pesaran A. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications. J Power Sources 2011;196(23):10351–10358.

    Article  Google Scholar 

  95. Bräuer S, Monhof M, Klör B., Plenter F, Beverungen D, Siemen C. Residential energy storage from repurposed electric vehicle batteries: market overview and development of a service-centered business model. IEEE; 2016. p. 143–152.

  96. Reinhardt R, Christodoulou I, Gassó-Domingo S., García B. A. Towards sustainable business models for electric vehicle battery second use: a critical review. Journal of environmental management 2019; 245:432–446.

    Article  Google Scholar 

  97. ABB. 2012. Gm and abb demonstrate chevrolet volt battery reuse–world’s first use of electric vehicle batteries for homes. http://www.abb.com/cawp/seitp202/8cb38a9d23816174c1257ab500497848.aspx10.15.17.

  98. Briones A, Francfort J, Heitmann P, Schey M, Schey S, Smart J. 2012. Vehicle-to-grid (v2g) power flow regulations and building codes review by the avta. Idaho National Lab., Idaho Falls, ID, USA, 1.

  99. Ambrose H. 2020. The 2nd life of used ev batteries. https://cleantechnica.com/2020/06/06/the-2nd-life-of-used-ev-batteries/https://cleantechnica.com/2020/06/06/the-2nd-life-of-used-ev-batteries/.

  100. Humayd ASB, Bhattacharya K. Distribution system planning to accommodate distributed energy resources and pevs. Electr Power Syst Res 2017;145:1–11.

    Article  Google Scholar 

  101. Lin X, Sun J, Ai S, Xiong X, Wan Y, Yang D. Distribution network planning integrating charging stations of electric vehicle with v2g. Int J Electr Power Energy Sys 2014;63:507–512.

    Article  Google Scholar 

  102. Sioshansi R, Denholm P. The value of plug-in hybrid electric vehicles as grid resources. The Energy Journal. 2010; 31(3).

  103. Mehrjerdi H. Dynamic and multi-stage capacity expansion planning in microgrid integrated with electric vehicle charging station. Journal of Energy Storage 2020;29:101351.

    Article  Google Scholar 

  104. Hemmati R, Mehrjerdi H. Investment deferral by optimal utilizing vehicle to grid in solar powered active distribution networks. J Energy Storage 2020;30:101512.

    Article  Google Scholar 

  105. Weckx S, Driesen J. Load balancing with ev chargers and pv inverters in unbalanced distribution grids. IEEE Trans Sustainable Energy 2015;6(2):635–643.

    Article  Google Scholar 

  106. Knezović K, Marinelli M. Phase-wise enhanced voltage support from electric vehicles in a danish low-voltage distribution grid. Electr Power Syst Res 2016;140:274–283.

    Article  Google Scholar 

  107. Bollen MHJ. Understanding power quality problems. Voltage sags and Interruptions. IEEE Press; 2000.

  108. Brinkel NBG, Gerritsma MK, AlSkaif TA, Lampropoulos I, van Voorden AM, Fidder HA, van Sark WGJHM. Impact of rapid pv fluctuations on power quality in the low-voltage grid and mitigation strategies using electric vehicles. Int J Electr Power Energy Sys 2020;118:105741.

    Article  Google Scholar 

  109. Milan P, Wächter M, Peinke J. Turbulent character of wind energy. Phys Rev Lett 2013; 110(13):138701.

    Article  Google Scholar 

  110. Lund H. Excess electricity diagrams and the integration of renewable energy. Int J Sustainable Energy 2003;23(4):149–156.

    Article  Google Scholar 

  111. Szinai JK, Sheppard Colin JR, Abhyankar N, Gopal AR. Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management. Reduced Grid Operating Energy Policy 2020;136:111051.

    Google Scholar 

  112. Richardson DB. Electric vehicles and the electric grid: a review of modeling approaches, impacts, and renewable energy integration. Renew Sustain Energy Rev 2013;19:247–254.

    Article  Google Scholar 

  113. Turton H, Moura F. Vehicle-to-grid systems for sustainable development: an integrated energy analysis. Technol Forecast Soc Chang 2008;75(8):1091–1108.

    Article  Google Scholar 

  114. Mousavian S, Erol-Kantarci M, Mouftah HT. Cyber-security and resiliency of transportation and power systems in smart cities, chapter 19. Hoboken: Wiley; 2018, pp. 507–527.

    Google Scholar 

  115. Mousavian S, Valenzuela J, Wang J. Real-time data reassurance in electrical power systems based on artificial neural networks. Electr Power Syst Res 2013;96:285–295.

    Article  Google Scholar 

  116. Nezamoddini N, Mousavian S, Erol-Kantarci M. A risk optimization model for enhanced power grid resilience against physical attacks. Electr Power Syst Res 2017;143:329–338.

    Article  Google Scholar 

  117. Mousavian S, Valenzuela J, Wang J. A probabilistic risk mitigation model for cyber-attacks to pmu networks. IEEE Trans Power Sys 2015;30(1):156–165.

    Article  Google Scholar 

  118. El Mrabet Z, Kaabouch N, El Ghazi H, El Ghazi H. Cyber-security in smart grid: survey and challenges. Comput Electr Eng 2018;67:469–482.

    Article  Google Scholar 

  119. Kimani K, Oduol V, Langat K. Cyber security challenges for iot-based smart grid networks. Int J Crit Infrastruct Prot 2019;25:36–49.

    Article  Google Scholar 

  120. Mehrdad S, Mousavian S, Madraki G, Dvorkin Y. Cyber-physical resilience of electrical power systems against malicious attacks: a review. Current Sustainable/Renewable Energy Reports 2018;5(1): 14–22.

    Article  Google Scholar 

  121. Parkinson S, Ward P, Wilson K, Miller J. Cyber threats facing autonomous and connected vehicles: future challenges. IEEE Trans Intell Transp Sy 2017;18(11):2898–2915.

    Article  Google Scholar 

  122. Rohde KW. 2019. Cyber security of dc fast charging: Potential impacts to the electric grid. Technical report, Idaho National Lab.(INL), Idaho Falls, ID (United States).

  123. Niyato D, Hoang DT, Wang P, Han Z. Cyber insurance for plug-in electric vehicle charging in vehicle-to-grid systems. IEEE Netw 2017;31(2):38–46.

    Article  Google Scholar 

  124. Hoang DT, Wang P, Niyato D, Hossain E. Charging and discharging of plugin electric vehicles (pevs) in vehicle-to-grid (v2g) systems: a cyber insurance-based model. IEEE Access 2017;5:732–754.

    Article  Google Scholar 

  125. Acharya S, Dvorkin Y, Pandžić H., Karri R. Cybersecurity of smart electric vehicle charging: a power grid perspective. IEEE Access 2020;8:214434–214453.

    Article  Google Scholar 

  126. Saxena N, Grijalva S, Chukwuka V, Vasilakos AV. Network security and privacy challenges in smart vehicle-to-grid. IEEE Wirel Commun 2017;24(4):88–98.

    Article  Google Scholar 

  127. Acharya S, Dvorkin Y, Karri R. Public plug-in electric vehicles+ grid data: is a new cyberattack vector viable? IEEE Trans Smart Grid 2020;11(6):5099–5113.

    Article  Google Scholar 

  128. Carryl C, Ilyas M, Mahgoub I, Rathod M. The pev security challenges to the smart grid: analysis of threats and mitigation strategies. 2013 International Conference on Connected Vehicles and Expo (ICCVE). IEEE; 2013. p. 300–305.

  129. •• Mousavian S, Erol-Kantarci M, Wu L, Ortmeyer T. A risk-based optimization model for electric vehicle infrastructure response to cyber attacks. IEEE Transactions on Smart Grid 2018;9(6):6160–6169. The authors investigated the possibility of cyberattacks to electric power grid stability through compromised EV charging stations and developed a risk-based optimization model to respond to these cyberattacks and restore the normal operations of the power systems.

    Article  Google Scholar 

  130. Mousavian S, Erol-Kantarci M, Ortmeyer T. Cyber attack protection for a resilient electric vehicle infrastructure. IEEE Globecom Workshops (GC Wkshps); 2015. p. 2015.

  131. Wang S, Wu J, Zhang S, Wang K. Ssds: A smart software-defined security mechanism for vehicle-to-grid using transfer learning. IEEE Access 2018;6:63967–63975.

    Article  Google Scholar 

  132. Falk R, Fries S. Securely connecting electric vehicles to the smart grid. Int J Adv Internet Technol. 2013;6(1).

  133. Saxena N, Choi BJ. Authentication scheme for flexible charging and discharging of mobile vehicles in the v2g networks. IEEE Trans Inf Forensics Secur 2016;11(7):1438–1452.

    Article  Google Scholar 

  134. Liu H, Ning H, Zhang Y, Yang LT. Aggregated-proofs based privacy-preserving authentication for v2g networks in the smart grid. IEEE Transactions on Smart Grid 2012;3(4):1722–1733.

    Article  Google Scholar 

  135. Guo H, Wu Y, Bao F, Chen H, Ma M. A unique batch authentication protocol for vehicle-to-grid communications. IEEE Transactions on Smart Grid 2011;2(4):707–714.

    Article  Google Scholar 

  136. Aggarwal S, Kumar N, Gope P. 2020. An efficient blockchain-based authentication scheme for energy-trading in v2g networks. IEEE Transactions on Industrial Informatics.

  137. Hassija V, Chamola V, Garg S, Krishna DNG, Kaddoum G, Jayakody DNK. A blockchain-based framework for lightweight data sharing and energy trading in v2g network. IEEE Trans Veh Technol 2020;69(6):5799–5812.

    Article  Google Scholar 

  138. Roman Luis FA, Gondim Paulo RL, Lloret J. Pairing-based authentication protocol for v2g networks in smart grid. Ad Hoc Netw 2019;90:101745.

    Article  Google Scholar 

  139. Kaveh Masoud , Martín D, Mosavi MR. A lightweight authentication scheme for v2g communications: a puf-based approach ensuring cyber/physical security and identity/location privacy. Electronics 2020; 9(9):1479.

    Article  Google Scholar 

  140. Bansal G, Naren N, Chamola V, Sikdar B, Kumar N, Guizani M. Lightweight mutual authentication protocol for v2g using physical unclonable function. IEEE Trans Veh Technol 2020;69(7): 7234–7246.

    Article  Google Scholar 

  141. Shao S, Pipattanasomporn M, Rahman S. Demand response as a load shaping tool in an intelligent grid with electric vehicles. IEEE Transactions on Smart Grid 2011;2(4):624–631.

    Article  Google Scholar 

  142. Sun W, Neumann F, Harrison GP. Robust scheduling of electric vehicle charging in lv distribution networks under uncertainty. IEEE Trans Ind Appl 2020;56(5):5785– 5795.

    Article  Google Scholar 

  143. Shi R, Li S, Zhang P, Lee KY. Integration of renewable energy sources and electric vehicles in v2g network with adjustable robust optimization. Renew Energy 2020;153:1067–1080.

    Article  Google Scholar 

  144. Zheng Y, Niu S, Shang Y, Shao Z, Jian L. Integrating plug-in electric vehicles into power grids: a comprehensive review on power interaction mode, scheduling methodology and mathematical foundation. Renew Sustain Energy Rev 2019;112:424–439.

    Article  Google Scholar 

  145. Tomić J, Kempton W. Using fleets of electric-drive vehicles for grid support. J Power Sources 2007;168(2):459–468.

    Article  Google Scholar 

  146. Farzin H, Fotuhi-Firuzabad M, Moeini-Aghtaie M. A practical scheme to involve degradation cost of lithium-ion batteries in vehicle-to-grid applications. IEEE Transactions on Sustainable Energy 2016;7 (4):1730–1738.

    Article  Google Scholar 

  147. Zhou BW, Littler T, Wang HF. 2013. The impact of vehicle-to-grid on electric power systems: a review. IET.

  148. Shin Chul-Jun, Lee Jun-Young. An electrolytic capacitor-less bi-directional ev on-board charger using harmonic modulation technique. IEEE Trans Power Electronics 2013;29(10):5195–5203.

    Article  Google Scholar 

  149. Mandrile F, Cittanti D, Mallemaci V, Bojoi R. Electric vehicle ultra-fast battery chargers: a boost for power system stability? World Electric Vehicle Journal 2021;12(1):16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedamirabbas Mousavian.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection on Energy Markets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raouf, B., Mousavian, S. & Ghazinour, K. Interconnected and Complex Electric Power and Transportation Systems: a SWOT Analysis. Curr Sustainable Renewable Energy Rep 8, 207–221 (2021). https://doi.org/10.1007/s40518-021-00193-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40518-021-00193-5

Keywords

Navigation