Skip to main content
Log in

Thermal Investigation and Food Quality Analysis on a Solar Tunnel Drier

  • Regional Renewable Energy (A Sharma, Section Editor)
  • Published:
Current Sustainable/Renewable Energy Reports Aims and scope Submit manuscript

Abstract

A comprehensive study carried out in a solar drier in regards to thermal performance and food quality is appended in this paper. A lab-scale solar drier has been designed and tested for thermal performance, economics, and food quality. The drying temperature ranged between 32 and 54 °C. Ivy gourds were chosen for drying experiment, and the dried products were subjected to color and texture analysis. The color deviation (ΔE) for solar dried and open sun-dried samples was 4.59 and 10.1, respectively. The hardness of solar dried and open sun-dried sample was 84.29 and 30.87 N, respectively. The economic analysis was done by three methods. The annualized cost method showed that the cost of drying unit weight of product using solar tunnel drier was ₹ 10.94 and using conventional drier was ₹ 17.39. The payback period of the drier was estimated to be 3.5 years with a lifetime savings of ₹ 397,011.00.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a*:

Redness

b*:

Yellowness

Ccc :

Capital cost of drier (₹)

d:

Rate of interest on long-term investment

i:

Rate of inflation

L*:

Lightness

N:

Payback period (year)

S1 :

Saving during the first year for solar drier (₹)

wi :

Initial weight (kg)

wd :

Dry weight (kg)

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Afriyie JK, Nazha MAA, Rajakaruna H, Forson FK. Experimental investigations of a chimney-dependent solar crop dryer. Renew Energy. 2009;34:217–22. doi:10.1016/j.renene.2008.04.010.

    Article  Google Scholar 

  2. Afriyie JK, Rajakaruna H, Nazha MAA, Forson FK. Mathematical modelling and validation of the drying process in a Chimney-Dependent Solar Crop Dryer. Energy Convers Manag. 2013;67:103–16. doi:10.1016/j.enconman.2012.11.007. Simulation procedure for drying in solar crop dryer is given clearly.

    Article  Google Scholar 

  3. Akbulut A, Durmus A. Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy. 2010;35:1754–63. doi:10.1016/j.energy.2009.12.028.

    Article  Google Scholar 

  4. Aktas M, Ceylan I, Yilmaz S. Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination. 2009;239:266–75. doi:10.1016/j.desal.2008.03.023.

    Article  Google Scholar 

  5. Ayyappan S, Mayilsamy K. Experimental investigation on a solar tunnel drier for copra drying. J Sci Ind Res. 2010;69:635–8.

    Google Scholar 

  6. Usub T, Lertsatitthanakorn C, Poomsa-ad N, Wiset L, Yang L, Siriamornpun S. Experimental performance of a solar tunnel dryer for drying silkworm pupae. Biosyst Eng. 2008;101:209–16. doi:10.1016/j.biosystemseng.2008.06.011.

    Article  Google Scholar 

  7. Sallam YI, Aly MH, Nassar AF, Mohamed EA. Solar drying of whole mint plant under natural and forced convection. J Adv Res. 2015;2:171–8. doi:10.1016/j.jare.2013.12.001.

    Article  Google Scholar 

  8. Amir EJ, Grandegger K, Esper A, Sumarsono M, Djaya C, Muhlbauer W. Development of a multi-purpose solar tunnel dryer for use in humid tropics. Renew Energy. 1991;2:167–76. doi:10.1016/0960-1481(91)90072-W.

    Article  Google Scholar 

  9. Karim MA, Hawlader MNA. Development of solar air collectors for drying applications. Energy Convers Manag. 2004;45:329–44. doi:10.1016/S0196-8904(03)00158-4.

    Article  Google Scholar 

  10. Pangavhane DR, Sawhney RL. Review of research and development work on solar dryers for grape drying. Energy Convers Manag. 2002;43:45–61. doi:10.1016/S0196-8904(01)00006-1.

    Article  Google Scholar 

  11. Guine RPF, Barroca MJ. Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper). Food Bioprod Process. 2012;90:58–63. doi:10.1016/j.fbp.2011.01.003.

    Article  Google Scholar 

  12. Prachayawarakorn S, Tia W, Plyto N, Soponronnarit S. Drying kinetics and quality attributes of low-fat banana slices dried at high temperature. J Food Eng. 2008;85(509):517. doi:10.1016/j.jfoodeng.2007.08.011.

    Google Scholar 

  13. Kutyła-Olesiuk A, Nowacka M, Wesoły M, Ciosek P. Evaluation of organoleptic and texture properties of dried apples by hybrid electronic tongue. Sensors Actuators B Chem. 2013;187:234–40. doi:10.1016/j.snb.2012.10.133.

    Article  Google Scholar 

  14. Soysal Y, Ayhan Z, Eştürk O, Arıkan MF. Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosyst Eng. 2009;103:455–63. doi:10.1016/j.biosystemseng.2009.05.010.

    Article  Google Scholar 

  15. Ramallo LA, Mascheroni RH. Quality evaluation of pineapple fruit during drying process. Food Bioprod Process. 2012;90:275–83. doi:10.1016/j.fbp.2011.06.001.

    Article  Google Scholar 

  16. Krishna Prasad KM, Raheem S, Vijayalekshmi P, Kamala Sastri C. Basic aspects and applications of tristimulus colorimetry. Talanta. 1996;43:1187–206. doi:10.1016/0039-9140(96)01871-1.

    Article  Google Scholar 

  17. Szczesniak AS. Texture is a sensory property. Food Qual Prefer. 2002;13:215–25. doi:10.1016/S0950-3293(01)00039-8.

    Article  Google Scholar 

  18. Sreekumar A. Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables. Energy Convers Manag. 2010;51:2230–8. doi:10.1016/j.enconman.2010.03.017.

    Article  Google Scholar 

  19. Rathore NS, Panwar NL. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Appl Energy. 2010;87:2764–7. doi:10.1016/j.apenergy.2010.03.014.

    Article  Google Scholar 

  20. Varun N, Sunil, Sharma. Construction and Performance Analysis of an Indirect Solar Dryer Integrated with Solar Air Heater. Procedia Eng. 2010;38:3260–9. doi:10.1016/j.proeng.2012.06.377.

    Article  Google Scholar 

  21. Srisittipokakun N, Kirdsiri K, Kaewkhao J. Solar drying of Andrographis paniculata using a parabolicshaped solar tunnel dryer. Procedia Eng. 2012;32:839–46. doi:10.1016/j.proeng.2012.02.021.

    Article  Google Scholar 

  22. Verma RC, Gupta A. Effect of pre-treatments on quality of solar-dried amla. J Food Eng. 2004;65:397–402. doi:10.1016/j.jfoodeng.2004.02.010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sreekumar.

Ethics declarations

Conflict of Interest

K. Rajarajeswari, K.V. Sunooj, and A. Sreekumar declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regional Renewable Energy

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

(JPG 34 kb)

Fig. 2

(JPG 2246 kb)

Fig. 3

(JPG 18 kb)

Fig. 4

(JPG 16 kb)

Fig. 5

(JPG 39 kb)

Fig. 6

(JPG 41 kb)

Fig. 7

(JPG 39 kb)

Fig. 8

(JPG 40 kb)

Fig. 9

(JPG 17 kb)

Table 1

(DOCX 11 kb)

Table 2

(DOCX 11 kb)

Table 3

(DOCX 11 kb)

Table 4

(DOCX 11 kb)

Table 5

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajarajeswari, K., Sunooj, K.V. & Sreekumar, A. Thermal Investigation and Food Quality Analysis on a Solar Tunnel Drier. Curr Sustainable Renewable Energy Rep 3, 108–112 (2016). https://doi.org/10.1007/s40518-016-0051-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40518-016-0051-3

Keywords

Navigation