Skip to main content
Log in

The Influence of Rainfall Variation on Slope Stability: Case Study of Wanayasa Street Slope, Banjarnegara, Indonesia

  • Technical Paper
  • Published:
Transportation Infrastructure Geotechnology Aims and scope Submit manuscript

Abstract

This study aims to understand the rainfall characteristics in Karangkobar that potentially develop the rainfall threshold triggering a landslide in Banjarnegara-Karangkobar lane. To tackle the rainfall uncertainty, 11 years of rainfall data was employed to obtain three dominant rainfall models. The hydromechanical strength of soil was modeled numerically with the precipitation. Back analysis was presented to validate the model. The report provides the correlation of seepage flow and the safety factor of slope (FS) affected by the rainfall model. It resulted in a strong correlation between rainfall intensity to slope instability compared to rainfall duration. It is thus the slope failure mechanism identified as a debris flow rather than slope cracking. The slope result was relevant to understanding rainfall characteristics in Banjarnegara annually since 2014. The rainfall model proposed > 8 h rainfall duration and rainfall cumulative 45.6 mm or 5.7 mm/h intensity, as the rainfall threshold for the warning system in the study case area. This study report is applicable for the area where rainfall threshold is not available such as the Banjarnegara to Karangkobar route, which help the local citizens and policymakers decide on disaster management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All the datasets used and analyzed during the current study are available from the author upon reasonable request.

References

  • Arrisaldi, T., Wilopo, W., Fathani, T.F.: Landslide susceptibility mapping and their rainfall thresholds model in Tinalah Watershed, Kulon Progo District, Yogyakarta Special Region Indonesia. J Appl Geol 6(2), 112–118 (2021)

    Article  Google Scholar 

  • ASTM D3080/D3080M-1: Direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken (2012). https://doi.org/10.1520/D3080_D3080M-11

  • ASTM D2434–68: Permeability of granular soils (Constant Head). ASTM International, West Conshohocken. (2000). https://doi.org/10.1520/D2434-68R00.

  • ASTM D854-92:Standard test methods for specific gravity of soil solids by water pycnometer. American Society for Testing and Materials (ASTM) International, West Conshohocken, PA (1992)

  • ASTM D698: Standard practice for laboratory compaction characteristics of soil using standard effort. ASTM International, West Conshohocken (2003). https://doi.org/10.1520/D0698-12R21

  • BMKG: The forecast for the 2023 dry season in indonesia. Badan Meteorologi, Klimatologi dan Geofisika (BMKG). Meteorological, Climatological, and Geophysical Agency, Jakarta, Indonesia (2023)

  • Chen, H.-W., C.-Y. Chen.: Warning models for landslide and channelized debris flow under climatechange conditions in taiwan. Water 14(5):695 (2022). https://doi.org/10.3390/w14050695

  • Chinkulkijniwat, A., Salee, R., Horpibulsuk, S., Arulrajah, A., Hoy, M.: Landslide rainfall threshold for landslide warning in Northern Thailand. Geomat. Nat. Haz. Risk 13(1), 2425–2441 (2022). https://doi.org/10.1080/19475705.2022.2120833

    Article  Google Scholar 

  • Egeli, I., Pulat, H.F.: Mechanism and modelling of shallow soil slope stability during high intensity and short duration rainfall. Scientia Iranica 18(6), 1179–1187 (2011). https://doi.org/10.1016/j.scient.2011.09.010

    Article  Google Scholar 

  • Faris, F., Fathani, F.: A coupled hydrology/slope kinematics model for developing early warning criteria in the Kalitlaga Landslide, Banjarnegara, Indonesia. In :Progress of Geo-Disaster Mitigation Technology in Asia. Springer, 453–467 (2013). https://doi.org/10.1007/978-3-642-29107-4_26

  • Fathani, T. F., Karnawati, D., Wilopo, W.: An adaptive and sustained landslide monitoring and early warning system. In Landslide science for a safer geoenvironment: Springer, 563–567 (2014). https://doi.org/10.1007/978-3-319-05050-8_87

  • Fathani, T.F., Karnawati, D., Wilopo, W.: An integrated methodology to develop a standard for landslide early warning systems. Nat. Hazard. 16(9), 2123–2135 (2016). https://doi.org/10.5194/nhess-16-2123-2016

    Article  Google Scholar 

  • Karnawati, D., Fathani, T.F., Ignatius, S., Andayani, B., Legono, D., Burton, P.W.: Landslide hazard and community-based risk reduction effort in Karanganyar and the surrounding area, central Java Indonesia. J Mountain Sci 8(2), 149–153 (2011). https://doi.org/10.1007/s11629-011-2107-6

    Article  Google Scholar 

  • Laboratory, U.D.S.: Laporan Pnyelidikan Tanah Pada Penanganan Longsoran Banjarnegara-Wanayasa. Universitas Diponegoro, Semarang (2015)

    Google Scholar 

  • Likitlersuang, S., Kounyou, K., Prasetyaningtiyas, G.A.: Performance of geosynthetic cementitious composite mat and vetiver on soil erosion control. J. Mt. Sci. 17(6), 1410–1422 (2020). https://doi.org/10.1007/s11629-019-5926-5

    Article  Google Scholar 

  • Ling, H., Ling, H.I.: Centrifuge model simulations of rainfall-induced slope instability. J Geotechn Geoenviron Eng 138(9), 1151–1157 (2012a). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000679

    Article  Google Scholar 

  • Ling, H., Ling, H.I.: Rainfall-induced slope instability – Implications for global climate change. Proceedings of the First Asian Workshop on Physical Modelling in Geotechnics.  Viswanadham, B.V.S., Gaudin, C. (eds.) November 14th-15th, Bloomsbury Publishing India Pvt. Ltd., pp 135–140. New Delhi, India (2012b)

  • Ling, H., Ling, H.I., Li, L., Kawabata T.: Centrifuge modeling of slope failures induced by rainfall. Proceedings of 7th International Conference on Physical Modelling in Geotechnics, Springman, Laue & Seward (eds), Taylor & Francis Group, London, 1131–1136 (2010). https://doi.org/10.1201/b10554

  • Liu, W., Luo, X., Huang, F., Fu, M.: Uncertainty of the soil–water characteristic curve and its effects on slope seepage and stability analysis under conditions of rainfall using the markov chain monte carlo method. Water 9(10), 758 (2017). https://doi.org/10.3390/w9100758

    Article  CAS  Google Scholar 

  • Lu, M., Zheng, J., Zhang, J., Huang, H.: On assessing the probability of rainfall-induced slope failure during a given exposure time. Acta Geotech. 18(3), 1255–1267 (2023). https://doi.org/10.1007/s11440-022-01655-w

    Article  Google Scholar 

  • Mase, L.Z., Amri, K., Farid, M., Rahmat, F., Fikri, M.N., Saputra, J., Likitlersuang, S.: Effect of water level fluctuation on riverbank stability at the estuary area of Muaro Kualo Segment, Muara Bangkahulu River in Bengkulu Indonesia. Eng J 26(3), 1–16 (2022a). https://doi.org/10.4186/ej.2022.26.3.1

    Article  Google Scholar 

  • Mase, L.Z., Perdana, A., Hardiansyah, et al.: A case study of slope stability improvement in Central Bengkulu Landslide in Indonesia. Transp Infrastruct Geotech 9, 442–466 (2022b)

  • Maynord, S.T., Ruff, J.F., Abt, S.R.: Riprap design. J Hydraulic Eng 115(7), 937–949 (1989)

    Article  Google Scholar 

  • Muntohar, A.S., Prasetyaningtiyas, G.A., Hidayat, R.: The Spatial Model using TRIGRS to determine Rainfall-Induced Landslides in Banjarnegara, Central Java, Indonesia. Paper Read at J Civil Eng Forum (2021). https://doi.org/10.22146/jcef.55282

    Article  Google Scholar 

  • Ng, C.W., Leung, A.K., Yu, R., Kamchoom, V.: Hydrological effects of live poles on transient seepage in an unsaturated soil slope: centrifuge and numerical study. J Geotech Geoenviron Eng 143(3), 04016106 (2017). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001616

    Article  Google Scholar 

  • Omondi, P., Awange, J.L., Ogallo, L., Okoola, R., Forootan, E.: Decadal rainfall variability modes in observed rainfall records over East Africa and their relations to historical sea surface temperature changes. J. Hydrol. 464, 140–156 (2012). https://doi.org/10.1016/j.jhydrol.2012.07.003

    Article  ADS  Google Scholar 

  • Prasetyaningtiyas, G.A., Priyono, K.D., Azhom, M.N., Anindyaputra, M.E.: Pengaruh Rembesan Pada Kuat Geser Tanah Jenuh Sebagian: The Ifluence Of Water Infiltration To Shear Strength Of Unsaturated Soil. Media Ilmiah Teknik Sipil 11(1), 40–47 (2023). https://doi.org/10.33084/mits.v11i1.4065

    Article  Google Scholar 

  • Priyono, K.D., Sartohadi, J.: Tipologi Pedogeomorfik Longsorlahan di Pegunungan Menoreh Kabupaten Kulonprogo Daerah Istimewa Yogyakarta. The Tipology Of Pedogeomorfic Of Landslide Area In Menoreh Mountainous Kulon Progo District, Yogyakarta Province]. Forum Geografi (2011). https://doi.org/10.23917/forgeo.v25i1.5035

  • Quirino, D. T., D. Casaroli, R. A. Jucá Oliveira, M. Mesquita, A. W. Pego Evangelista, and J. Alves Júnior. Evaluation of TRMM satellite rainfall estimates (algorithms 3B42 V7 & RT) over the Santo Antônio county (Goiás, Brazil). Revista Facultad Nacional de Agronomía Medellín 70(3), 8251–8261 (2017). https://doi.org/10.15446/rfna.v70n3.61805

  • Rikuto, D., G. Christopher, B. Bradak, A. Saputra, and D. S. Hadmoko. Predisposition Factor of Safety of Landslide Dams from Typhoon Talas, Kii Peninsula, Japan. Paper read at Forum Geografi 36(2) (2022). https://doi.org/10.23917/forgeo.v36i2.20668

  • Samodra, G., D. S. Hadmoko, G. N. Wicaksono, I. P. Adi, M. Yudinugroho, S. B. Wibowo, H. Suryatmojo, T. H. Purwanto, B. S. Widartono,  F. Lavigne 2018. The March 25 and 29, 2016 landslide-induced debris flow at Clapar, Banjarnegara, Central Java. Landslides 15(5), 985–993 (2018). https://doi.org/10.1007/s10346-018-0958-4

  • Shah, B., M. S. Bhat, A. Alam, U. F. Malik, N. Ali, and H. A. Sheikh. Establishing the landslide-triggering rainfall thresholds for the Kashmir Himalaya. Natural Hazards:1–23 (2023) https://doi.org/10.1007/s11069-023-06254-w

  • Sinarta, I. N., and I. A. Basoka. 2019. Safety factor analysis of landslides hazard as a result of rain condition infiltration on Buyan-Beratan Ancient Mountain. Paper read at Journal of Physics: Conference Series (2019). https://doi.org/10.1088/1742-6596/1402/2/022002

  • Sugianti, K., Tohari, A.: The Impact of Geological and Rainfall Characteristics on Slope Stability Analysis in Shallow Landslide Modelling using the TRIGRS Model. Rudarsko-Geološko-Naftni Zbornik 38(4), 147–166 (2023). https://doi.org/10.17794/rgn.2023.4.12

    Article  Google Scholar 

  • Suroso, Rainfall Analysis to Create Intensity-Duration-Frequency (IDF) Curves in Flood-Prone Areas, Banyumas Regency. Teknik Sipil 3 (January):37–40 (2006). https://sipil-uph.tripod.com/vol3.1.4.pdf

  • Susanti, P., Miardini, A., Harjadi, B.: Disaster mitigation on lands affected by landslides in Banjarnegara Regency Paper Read at IOP Conference Series: Earth Environ Sci (2021). https://doi.org/10.1088/1755-1315/916/1/012026

  • Taylor, D.W.: Fundamentals of Soil Mechanics. Soil Science, John Wiley & Sons, Inc., New York (1948)

  • Thomas, J., Gupta, M., Srivastava, P.K., Petropoulos, G.P.: Assessment of a dynamic physically based slope stability model to evaluate timing and distribution of rainfall-induced shallow landslides. ISPRS Int. J. Geo Inf. 12(3), 105 (2023). https://doi.org/10.3390/ijgi12030105

    Article  Google Scholar 

  • Ukhurebor, K., Abiodun, I.: Variation in annual rainfall data of forty years (1978–2017) for South-South, Nigeria. J. Appl. Sci. Environ. Manag. 22(4), 511–518 (2018). https://doi.org/10.4314/jasem.v22i4.13

    Article  Google Scholar 

  • Vanapalli, S., Fredlund, D., Pufahl, D., Clifton, A.: Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 33(3), 379–392 (1996). https://doi.org/10.1139/t96-060

    Article  Google Scholar 

  • Wang, B.: Rainy season of the Asian-Pacific summer monsoon. J. Clim. 15(4), 386–398 (2002). https://doi.org/10.1175/1520-0442(2002)015%3c0386:RSOTAP%3e2.0.CO;2

    Article  ADS  Google Scholar 

  • Wiwoho, B. S., Astuti, I. S., Purwanto, P., Deffinika, I., Alfarizi, I. A. G., Sucahyo, H. R., Gusti, R., Herwanto, M. T., Herlambang, G. A.: Assessing long-term rainfall trends and changes in a tropical watershed Brantas, Indonesia: an approach for quantifying the agreement among satellite-based rainfall data, ground rainfall data, and small-scale farmers questionnaires. Nat. Haz. 1–28 (2023). https://doi.org/10.1007/s11069-023-05969-0

  • Yihui, D., Chan, J.C.: The East Asian summer monsoon: an overview. Meteorol. Atmos. Phys. 89(1–4), 117–142 (2005). https://doi.org/10.1007/s00703-005-0125-z

    Article  ADS  Google Scholar 

  • Zapata, N., Salvador, R., Latorre, B., Paniagua, P., Medina, E., Playán, E.: Effect of a growing maize canopy on solid-set sprinkler irrigation: kinetic energy dissipation and water partitioning. Irrig. Sci. 39(3), 329–346 (2021). https://doi.org/10.1007/s00271-020-00713-z

    Article  Google Scholar 

  • Zhisheng, A., Guoxiong, W., Jianping, L., Youbin, S., Yimin, L., Weijian, Z., Yanjun, C., Anmin, D., Li, L., Jiangyu, M.: Global monsoon dynamics and climate change. Annu. Rev. Earth Planet. Sci. 43, 29–77 (2015). https://doi.org/10.1146/annurev-earth-060313-054623

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was founded by Internal funding Tridharma, 076/A.3-III/FT/I/2023 from Universitas Muhammadiyah Surakarta. This study is conducted under collaboration research between Universitas Muhammadiyah Surakarta and Soil Mechanic Laboratory work Universitas Gadjah Mada.

Funding

Tridharma funding, 076/A.3-III/FT/I/2023 from Universitas Muhammadiyah Surakarta.

Author information

Authors and Affiliations

Authors

Contributions

Gayuh Aji Prasetyaningtiyas: Conceptualization, Methodology, Data Analysis, Visualization, Original Draft, Review-Editing, Project Administration. Lindung Zalbuin Mase: Vizualisation Original Draft, Data Analysis, Review-Editing. Ahmad Rifa’i: Data analysis. Teuku Faisal Fathani: Data analysis. Muhammad Najib Azhom: Visualization Original draft. Anto Budi Listyawan: Project Administration.

Corresponding author

Correspondence to Gayuh Aji Prasetyaningtiyas.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasetyaningtiyas, G.A., Mase, L.Z., Rifa’i, A. et al. The Influence of Rainfall Variation on Slope Stability: Case Study of Wanayasa Street Slope, Banjarnegara, Indonesia. Transp. Infrastruct. Geotech. (2024). https://doi.org/10.1007/s40515-024-00376-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40515-024-00376-9

Keywords

Navigation