Skip to main content
Log in

Quantum space, quantum time, and relativistic quantum mechanics

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

We treat space and time as bona fide quantum degrees of freedom on an equal footing in Hilbert space. Motivated by considerations in quantum gravity, we focus on a paradigm dealing with linear, first-order Hamiltonian and momentum constraints that lead to emergent features of temporal and spatial translations. Unlike the conventional treatment, we show that Klein-Gordon and Dirac equations in relativistic quantum mechanics can be unified in our paradigm by applying relativistic dispersion relations to eigenvalues rather than treating them as operator-valued equations. With time and space being treated on an equal footing in Hilbert space, we show symmetry transformations to be implemented by unitary basis changes in Hilbert space, giving them a stronger quantum mechanical footing. Global symmetries, such as Lorentz transformations, modify the decomposition of Hilbert space; and local symmetries, such as U(1) gauge symmetry are diagonal in coordinate basis and do not alter the decomposition of Hilbert space. We briefly discuss extensions of this paradigm to quantum field theory and quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

My manuscript has no associated data.

Notes

  1. Often referred to as first quantization, though we will refrain from using this terminology in this paper.

  2. A similar entangled state \(\left| \Psi \right\rangle \bigr \rangle \) can be written in the Page-Wootters formulation too with entanglement between states in \({\mathcal {H}}_{t}\) and \({{{\mathcal {H}}}}_S\) [21].

  3. The function \(\lambda (t,\vec {x})\) is typically taken to be continuous and sufficiently differentiable in its variables and dies off rapidly enough as \(\vec {x} \rightarrow \pm \infty \).

References

  1. Kronz, F.M., Lupher, T.A.: Unitarily inequivalent representations in algebraic quantum theory. Int. J. Theor. Phys. 44(8), 1239–1258 (2005). https://doi.org/10.1007/s10773-005-4683-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  3. Shankar, R.: Principles of Quantum Mechanics. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  4. De Sanctis, M.: An Introduction to Relativistic Quantum Mechanics. I. From Relativity to Dirac Equation, arXiv preprint arXiv:0708.0052 (2007)

  5. Isham, C.J.: Canonical Quantum Gravity and the Problem of Time. arXiv:gr-qc/9210011 [gr-qc]. [NATO Sci. Ser. C409,157 (1993)]

  6. Anderson, E.: The Problem of Time. Fundamental Theories of Physics, vol. 190. Springer International Publishing (2017). https://www.springer.com/us/book/9783319588469

  7. Kuchař, K.: Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics (1992)

  8. Deriglazov, A., Rizzuti, B.: Reparametrization-invariant formulation of classical mechanics and the schrödinger equation. Am. J. Phys. 79(8), 882–885 (2011)

    Article  Google Scholar 

  9. Deriglazov, A.A., Evdokimov, K.E.: Local symmetries and the noether identities in the hamiltonian framework. Int. J. Mod. Phys. A 15(25), 4045–4067 (2000)

    Article  MathSciNet  Google Scholar 

  10. Deriglazov, A.A.: Improved extended hamiltonian and search for local symmetries. J. Math. Phys. 50(1), 012907 (2009)

    Article  MathSciNet  Google Scholar 

  11. Deriglazov, A.: Notes on Lagrangean and Hamiltonian Symmetries, arXiv preprint arXiv:hep-th/9412244 (1995)

  12. Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)

    Article  MathSciNet  Google Scholar 

  13. Dirac, P.: Lectures on quantum mechanics (yeshiva univ., new york, 1964); ld faddeev and r. jackiw. Phys. Rev. Lett 60 (1988) 1692

  14. DeWitt, B.S.: Quantum theory of gravity. ii. the manifestly covariant theory. Phys. Rev. 162(5), 1195 (1967)

    Article  Google Scholar 

  15. Carroll, S.M., Singh, A.: Mad-Dog Everettianism: Quantum Mechanics at Its Most Minimal. arXiv:1801.08132 [quant-ph]

  16. Giddings, S.B.: Quantum Gravity: A Quantum-first Approach, arXiv preprint arXiv:1805.06900 (2018)

  17. Giddings, S.B.: Quantum-first gravity. Found. Phys. 49(3), 177–190 (2019)

    Article  MathSciNet  Google Scholar 

  18. Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27(12), 2885 (1983)

    Article  Google Scholar 

  19. Wootters, W.K.: Time replaced by quantum correlations. Int. J. Theor. Phys. 23(8), 701–711 (1984)

    Article  MathSciNet  Google Scholar 

  20. Page, D.: Itp preprint nsf-itp-89-18. Time as an inaccessible observable (1989)

  21. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum time. Phys. Rev. D 92(4), 045033 (2015)

    Article  MathSciNet  Google Scholar 

  22. Gambini, R., Porto, R.A., Pullin, J.: Loss of quantum coherence from discrete quantum gravity. Classical Quant. Grav. 21(8), L51 (2004)

    Article  MathSciNet  Google Scholar 

  23. Gambini, R., Porto, R.A., Pullin, J.: A relational solution to the problem of time in quantum mechanics and quantum gravity: a fundamental mechanism for quantum decoherence. New J. Phys. 6(1), 45 (2004)

    Article  Google Scholar 

  24. Gambini, R., Porto, R.A., Pullin, J., Torterolo, S.: Conditional probabilities with dirac observables and the problem of time in quantum gravity. Phys. Rev. D 79(4), 041501 (2009)

    Article  MathSciNet  Google Scholar 

  25. Leon, J., Maccone, L.: The pauli objection. Found. Phys. 47(12), 1597–1608 (2017)

    Article  MathSciNet  Google Scholar 

  26. Mendes, L.R., Soares-Pinto, D.O.: Time as a consequence of internal coherence. Proc. Roy. Soc. A 475(2231), 20190470 (2019)

    Article  MathSciNet  Google Scholar 

  27. Smith, A.R., Ahmadi, M.: Relativistic Quantum Clocks Observe Classical and Quantum Time Dilation, arXiv preprint arXiv:1904.12390 (2019)

  28. Smith, A.R., Ahmadi, M.: Quantizing time: interacting clocks and systems. Quantum 3, 160 (2019)

    Article  Google Scholar 

  29. Pal, P.B.: Dirac, Majorana and Weyl fermions. Am. J. Phys. 79, 485–498 (2011). arXiv:1006.1718 [hep-ph]

    Article  Google Scholar 

  30. Jagannathan, R.: On generalized Clifford Algebras and their Physical Applications. arXiv:1005.4300 [math-ph]

  31. Singh, A., Carroll, S.M.: Modeling Position and Momentum in Finite-Dimensional Hilbert Spaces via Generalized Clifford Algebra. arXiv:1806.10134 [quant-ph]

  32. Santhanam, T.S., Tekumalla, A.R.: Quantum mechanics in finite dimensions. Found. Phys. 6(5), 583–587 (1976)

    Article  Google Scholar 

  33. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Books on Mathematics. Dover Publications (1950). https://books.google.com/books?id=jQbEcDDqGb8C

  34. Bekenstein, J.D.: A universal upper bound on the entropy to energy ratio for bounded systems. Phys. Rev. D 23, 287 (1981)

    Article  MathSciNet  Google Scholar 

  35. ’t Hooft, G.: Dimensional Reduction in Quantum Gravity. arXiv:gr-qc/9310026

  36. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995). arXiv:hep-th/9409089

    Article  MathSciNet  Google Scholar 

  37. Bao, N., Carroll, S.M., Singh, A.: The Hilbert space of quantum gravity is locally finite-dimensional. Int. J. Mod. Phys. D 26(12), 1743013 (2017). arXiv:1704.00066 [hep-th]

    Article  MathSciNet  Google Scholar 

  38. Banks, T.: “QuantuMechanics and CosMology.” Talk given at the festschrift for L. Susskind, Stanford University, May 2000 (2000)

  39. Fischler, W.: Taking de Sitter Seriously. Talk given at Role of Scaling Laws in Physics and Biology (Celebrating the 60th Birthday of Geoffrey West), Santa Fe (2000)

  40. Albrecht, A.: The Theory of Everything vs the Theory of Anything, arXiv:gr-qc/9408023 [gr-qc]. [Lect. Notes Phys.455,321 (1995)]

  41. Albrecht, A., Iglesias, A.: The clock ambiguity and the emergence of physical laws. Phys. Rev. D 77, 063506 (2008). arXiv:0708.2743 [hep-th]

    Article  Google Scholar 

  42. Albrecht, A., Iglesias, A.: The clock ambiguity: implications and new developments. Fund. Theor. Phys. 172, 53–68 (2012)

    MathSciNet  Google Scholar 

  43. Marletto, C., Vedral, V.: Evolution without evolution and without ambiguities. Phys. Rev. D 95(4), 043510 (2017)

    Article  Google Scholar 

  44. Martinelli, T., Soares-Pinto, D.O.: Quantifying quantum reference frames in composed systems: local, global, and mutual asymmetries. Phys. Rev. A 99(4), 042124 (2019)

    Article  Google Scholar 

  45. Höhn, P.A., Vanrietvelde, A.: How to Switch Between Relational Quantum Clocks, arXiv preprint arXiv:1810.04153 (2018)

  46. Vanrietvelde, A., Hoehn, P.A., Giacomini, F., Castro-Ruiz, E.: A Change of Perspective: Switching Quantum Reference Frames via a Perspective-neutral Framework, arXiv preprint arXiv:1809.00556 (2018)

  47. Höhn, P.A.: Switching internal times and a new perspective on the wave function of the universe. Universe 5(5), 116 (2019)

    Article  Google Scholar 

  48. Vanrietvelde, A., Höhn, P.A., Giacomini, F.: Switching Quantum Reference Frames in the n-Body Problem and the Absence of Global Relational Perspectives, arXiv preprint arXiv:1809.05093 (2018)

  49. Connes, A., Rovelli, C.: Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories. Class. Quant. Grav. 11, 2899–2918 (1994). arXiv:gr-qc/9406019 [gr-qc]

    Article  Google Scholar 

  50. Rovelli, C.: Forget time. Found. Phys. 41, 1475–1490 (2011). arXiv:0903.3832 [gr-qc]

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Sean Carroll, Charles Cao, Aidan Chatwin-Davies, Swati Chaudhary and Frank Porter for helpful discussions during the course of this project. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC0011632, as well as by the Walter Burke Institute for Theoretical Physics at Caltech and the Foundational Questions Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashmeet Singh.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A. Quantum space, quantum time, and relativistic quantum mechanics. Quantum Stud.: Math. Found. 9, 35–53 (2022). https://doi.org/10.1007/s40509-021-00255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-021-00255-9

Keywords

Navigation