Skip to main content
Log in

Continuity of some operators arising in the theory of superoscillations

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

The study of superoscillations naturally leads to the analysis of a large class of convolution operators acting on spaces of entire functions. In particular, the key point is often the proof of the continuity of these operators on appropriate spaces. Most papers in the current literature utilize abstract methods from functional analysis to establish such continuity. In this paper, on the other hand, we rely on some recent advances in the study of entire functions, to offer explicit proofs of the continuity of such operators. To demonstrate the applicability and the flexibility of these explicit methods, we will use them to study the important case of superoscillations associated with quadratic Hamiltonians. The paper also contains a list of interesting open problems, and we have collected as well, for the convenience of the reader, some well-known results, and their proofs, on Gamma and Mittag–Leffler functions that are often used in our computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Albert, D., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988)

    Article  Google Scholar 

  2. Aharonov, Y., Colombo, F., Nussinov, S., Sabadini, I., Struppa, D.C., Tollaksen, J.: Superoscillation phenomena in \(SO(3)\). Proc. R. Soc. A 468, 3587–3600 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Some mathematical properties of superoscillations. J. Phys. A 44, 365304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: On some operators associated to superoscillations. Complex Anal. Oper. Theory 7, 1299–1310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: On the Cauchy problem for the Schrödinger equation with superoscillatory initial data. J. Math. Pures Appl. 99, 165–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Superoscillating sequences as solutions of generalized Schrödinger equations. J. Math. Pures Appl. 103, 522–534 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: On superoscillations longevity: a windowed Fourier transform approach. In: Struppa, D.C., Tollaksen, J. (eds.) Quantum Theory: A Two-Time Success Story, pp. 313–325. Springer, Berlin (2013)

  8. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Evolution of superoscillatory data. J. Phys. A 47, 205301 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: The mathematics of superoscillations. Mem. Am. Math. Soc. 247(1174), v+107 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Evolution of superoscillatory initial data in several variables in uniform electric field. J. Phys. A 50(18), 185201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Superoscillating sequences in several variables. J. Fourier Anal. Appl. 22(4), 751–767 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley-VCH Verlag, Weinheim (2005)

    Book  MATH  Google Scholar 

  13. Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11–20 (1990)

    Article  MathSciNet  Google Scholar 

  14. Aharonov, Y., Sabadini, I., Tollaksen, J., Yger, A.: Classes of superoscillating functions. In: Quantum Studies: Mathematics and Foundations. https://doi.org/10.1007/s40509-018-0156-z

  15. Aharonov, Y., Colombo, F., Struppa, D.C., Tollaksen, J.: Schrödinger evolution of superoscillations under different potentials. In Quantum Studies: Mathematics and Foundations. https://doi.org/10.1007/s40509-018-0161-2

  16. Aoki, T., Colombo, F., Sabadini, I., Struppa, D.C.: Continuity theorems for a class of convolution operators and applications to superoscillations (2016) (preprint)

  17. Berry, M.V., Morley-Short, S.: Representing fractals by superoscillations. J. Phys. A Math. Theor. 50(22), 22LT01 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Berry, M.V.: Faster than Fourier. In: Anandan, J.S., Safko, J.L. (eds.) Quantum Coherence and Reality; in Celebration of the 60th Birthday of Yakir Aharonov, pp. 55–65. World Scientific, Singapore (1994)

    Google Scholar 

  19. Berry, M., Dennis, M.R.: Natural superoscillations in monochromatic waves in D dimension. J. Phys. A 42, 022003 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Berry, M.V., Popescu, S.: Evolution of quantum superoscillations, and optical superresolution without evanescent waves. J. Phys. A 39, 6965–6977 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Buniy, R., Colombo, F., Sabadini, I., Struppa, D.C.: Quantum Harmonic Oscillator with superoscillating initial datum. J. Math. Phys. 55, 113511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Colombo, F., Gantner, J., Struppa, D.C.: Evolution of superoscillations for Schrödinger equation in uniform magnetic field. J. Math. Phys. 58(9), 092103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Colombo, F., Gantner, J., Struppa, D.C.: Evolution by Schrödinger equation of Ahronov–Berry superoscillations in centrifugal potential (2016) (submitted, preprint)

  24. Colombo, F., Sabadini, I., Struppa, D.C., Yger, A.: Superoscillating sequences and hyperfunctions (2017) (preprint)

  25. Colombo, F., Struppa, D.C., Yger, A.: Superoscillating sequences towards approximation in \(\cal{S}\) or \(\cal{S^{\prime }}\)-type spaces and extrapolation. J. Fourier Anal. Appl. (2018). https://doi.org/10.1007/s00041-018-9592-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sabadini.

Appendix

Appendix

We state in this section some well-known results on the gamma function and the Mittag–Leffler functions that we have used in the proofs.

Lemma 5.1

Let j, \(k\in \mathbb {N}\), then we have

$$\begin{aligned} (j+k)!\le 2^{j+k}j!k!. \end{aligned}$$

Proof

Let \(p\atopwithdelims ()j\) be the binomial coefficients, then it is well known that from the Newton binomial formula, we have

$$\begin{aligned} 2^p=\sum _{j=0}^p{p\atopwithdelims ()j}=\sum _{j=0}^p\frac{p!}{j!(p-j)!}, \end{aligned}$$

so

$$\begin{aligned} \frac{p!}{j!(p-j)!}\le 2^p \end{aligned}$$

and setting \(p-j=k\) we get the statement. \(\square \)

Lemma 5.2

Let n, \(k\in \mathbb {N}\), then we have

$$\begin{aligned} \Gamma (n+1)\Gamma (k+1)\le \Gamma (n+k+2). \end{aligned}$$

Proof

Let

$$\begin{aligned} B(p,q):=\int _0^1t^{p-1}(1-t)^{q-1}\mathrm{d}t \end{aligned}$$

be the beta function B. Its relation with the gamma function \(\Gamma \) is given by

$$\begin{aligned} B(p,q)=\frac{\Gamma (p)\Gamma (q)}{\Gamma (p+q)}. \end{aligned}$$

This can be shown in two steps. First, with the change of variable \(t=\cos ^2(\vartheta )\) the beta function can be written as

$$\begin{aligned} B(p,q)=2\int _0^{\pi /2}\cos ^{2p-1}(\vartheta )\sin ^{2q-1}(\vartheta ) \, \mathrm{d}\vartheta \end{aligned}$$

Second, we observe that

$$\begin{aligned} \Gamma (p)\Gamma (q)=\int _0^\infty \mathrm{e}^{-t}t^{p-1}\, \mathrm{d}t\int _0^\infty \mathrm{e}^{-s}s^{q-1}\, \mathrm{d}s \end{aligned}$$

and with the change of variables

$$\begin{aligned} t=r^2\cos ^2(\vartheta ),\quad s=r^2\sin ^2(\vartheta ) \end{aligned}$$

the previous formula becomes

$$\begin{aligned} \Gamma (p)\Gamma (q)=4\int _0^{\pi /2}\int _0^\infty r^{2p+2q-1} \mathrm{e}^{-r^2} \cos ^{2p-1}(\vartheta )\sin ^{2q-1}(\vartheta ) \, \mathrm{d}\vartheta \,\mathrm{d}r . \end{aligned}$$

By setting \(r^2=u\) in the above relation we obtain

$$\begin{aligned} \Gamma (p)\Gamma (q)=\Gamma (p+q)B(p,q). \end{aligned}$$

Finally, we observe that

$$\begin{aligned} \frac{\Gamma (n+1)\Gamma (k+1)}{\Gamma (n+k+2)}=B(n+1,k+1)\le \int _0^1t^{n}(1-t)^{k}\mathrm{d}t\le \int _0^1 \mathrm{d}t= 1; \end{aligned}$$

since, for \(t\in [0,1]\) it is \(t^{n}(1-t)^{k}\le 1\), and this ends the proof. \(\square \)

We conclude with a useful estimate that we have not used in this paper, but it enters into several problems in convolution operators associated with superoscillations.

Lemma 5.3

Let \(q\in [1,\infty )\). Then we have

$$\begin{aligned} \Gamma \Big (\frac{n}{q}+1\Big )\le (n!)^{1/q}. \end{aligned}$$

Proof

It is a direct consequence of Hölder inequality. Consider p and q such that \(1/p+1/q=1\), observe that

$$\begin{aligned} \Gamma \Big (\frac{n}{q}+1\Big )= & {} \int _0^\infty \mathrm{e}^{-t}t^{n/q}\, \mathrm{d}t\\= & {} \int _0^\infty \mathrm{e}^{-t(1/p+1/q)}t^{n/q}\, \mathrm{d}t, \end{aligned}$$

so we obtain

$$\begin{aligned} \Gamma \left( \frac{n}{q}+1\right)= & {} \int _0^\infty \mathrm{e}^{-t/q}t^{n/q}\ \mathrm{e}^{-t/p}\, \mathrm{d}t\\\le & {} \left( \int _0^\infty \mathrm{e}^{-t}t^{n}\ \, \mathrm{d}t\right) ^{1/q} \left( \int _0^\infty \mathrm{e}^{-t}\, \mathrm{d}t\right) ^{1/p}\\= & {} \left( \int _0^\infty \mathrm{e}^{-t}t^{n}\ \, \mathrm{d}t\right) ^{1/q}\\= & {} (n!)^{1/q}. \end{aligned}$$

\(\square \)

1.1 On the Mittag–Leffler function

The Mittag–Leffler function is defined by its power series

$$\begin{aligned} E_\alpha (z)=\sum _{k=0}^\infty \frac{z^k}{\Gamma (\alpha k+1)},\quad \alpha \in \mathbb {C},\quad \mathrm{Re}(\alpha )>0. \end{aligned}$$

The series converges in the whole complex plane for all \(\alpha \in \mathbb {C},\ \mathrm{Re}(\alpha )>0\). For all \(\mathrm{Re}(\alpha )<0\) it diverges everywhere on \(\mathbb {C}\setminus \{0\}\). For \(\mathrm{Re}(\alpha )=0\) the radius of convergence is \(R=\mathrm{e}^{\pi |Im(\alpha )|/2}\). The most interesting fact is that for \(\mathrm{Re}(\alpha )>0\) the Mittag–Leffler function is an entire function of finite order. Indeed using Stirling’s asymptotic formula

$$\begin{aligned} \Gamma (\alpha k+1)=\sqrt{2\pi } (\alpha k)^{\alpha k+1/2}\mathrm{e}^{-\alpha k}(1+o(1)),\quad \text {for} \ k\rightarrow \infty , \end{aligned}$$

so that for

$$\begin{aligned} c_k=\frac{1}{\Gamma (\alpha k+1)} \end{aligned}$$

for \(\alpha >0\) we have

$$\begin{aligned} \limsup _{k\rightarrow \infty }\frac{k\ln k}{\ln \frac{1}{|c_k|}}=\limsup _{k\rightarrow \infty }\frac{k\ln k}{\ln |\Gamma (\alpha k+1)|}=\frac{1}{\alpha } \end{aligned}$$

and

$$\begin{aligned} \limsup _{k\rightarrow \infty }\left( k^{1/\rho } \root k \of {|c_k|}\right) =\limsup _{k\rightarrow \infty }\left( k^{1/\rho } \root k \of {\frac{1}{|\Gamma (\alpha k+1)|}}\right) =(e/\alpha )^{\alpha }. \end{aligned}$$

This means that:

for each \(\alpha \in \mathbb {C}\) such that \(Re(\alpha )>0\) the Mittag–Leffler function is an entire function of order \(\rho =1/Re(\alpha )\) and of type \(\sigma =1\).

This function provides a generalization of the exponential function because we replace \(k!=\Gamma (k+1)\) by \((\alpha k)!=\Gamma (\alpha k+1)\) in the denominator of the power terms of the exponential series. A useful generalization that we have used in the computations of this paper is the two-parametric Mittag–Leffler function

$$\begin{aligned} E_{\alpha ,\beta }(z)=\sum _{k=0}^\infty \frac{z^k}{\Gamma (\alpha k+\beta )},\quad \alpha ,\ \beta \in \mathbb {C},\quad \mathrm{Re}(\alpha )>0. \end{aligned}$$

The function \(E_{\alpha ,\beta }(z)\) for \( \alpha ,\ \beta \in \mathbb {C}\) and \(Re(\alpha )>0\) is an entire function of \(\rho =1/\mathrm{Re}(\alpha )\) and of type \(\sigma =1\) for every \(\beta \in \mathbb {C}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, T., Colombo, F., Sabadini, I. et al. Continuity of some operators arising in the theory of superoscillations. Quantum Stud.: Math. Found. 5, 463–476 (2018). https://doi.org/10.1007/s40509-018-0159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-018-0159-9

Keywords

Navigation