Skip to main content
Log in

On nonlocal complexified Schrödinger equation and emergence of discrete quantum mechanics

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

In this paper, a nonlocal complexified Schrödinger equation is introduced based on the notion of complexified backward-forward wave functions. Some of its implications in quantum mechanics are discussed, where a number of properties are revealed and discussed, in particular, the discretization of space-time nonlocal infinitesimal coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suykens, J.A.K.: Extending Newton’s law from nonlocal-in-time kinetic energy. Phys. Lett. A 373, 1201–1211 (2009)

    Article  MATH  Google Scholar 

  2. El-Nabulsi, R.A.: Non-standard non-local-in-time Lagrangians in classical mechanics. Qual. Theor. Dyn. Sys. 13, 149–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. El-Nabulsi, R.A.: Complex backward-forward derivative operator in non-local-in-time Lagrangians mechanics. Qual. Theor. Dyn. Sys. (2016). doi:10.1007/s12346-016-0187-y

  4. Li, Z.-Y., Fu, J.-L., Chen, L.-Q.: Euler–Lagrange equation from nonlocal-in-time kinetic energy of nonconservative system. Phys. Lett. A 374, 106–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Stecki, J.: On the kinetic equation nonlocal in time for the generalized self-diffusion process. J. Comp. Phys. 7, 547–553 (1971)

    Article  MathSciNet  Google Scholar 

  6. Gomis, J., Kamimura, K., Llosa, J.: Hamiltonian formalism for space-time noncommutative theories. Phys. Rev. D63(4), 045003 (6 pages) (2001)

  7. Gordeziani, D.G.: On some initial conditions for parabolic equations. Reports of the Enlarged Session of the Seminar of I. Vekua Inst. Appl. Math. 4, 57–60 (1989)

    Google Scholar 

  8. Gordeziani, D.G.: On one problem for the Navier–Stokes equation, Abstracts, Contin. Mech. Related Probl. Anal., Tbilisi, 83 (1991)

  9. Gordeziani, D.G.: On solution of in time nonlocal problems for some equations of mathematical physics, ICM-94, Abstracts, Short Comm, pp. 240 (1994)

  10. Gordeziani, D.G., Grigalashvili, Z.: Non-local problems in time for some equations of mathematical physics. Dokl. Semin. Inst. Prikl. Mat. im. I. N. Vekua. 22, 108–114 (1993)

  11. Feynman, R.P.: Space-time approach to relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    Article  MathSciNet  Google Scholar 

  12. Nelson, E.: Derivation of the Schrödinger equation from newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  Google Scholar 

  13. Nottale, L.: Fractal space-time and microphysics: towards a theory of scale relativity. World Scientific (1993)

  14. Valchev, T.: On a Nonlocal Nonlinear Schrödinger Equation. In: Slavova, A (ed.) Mathematics in Industry, pp. 36–52. Cambridge Scholars Publishing (2014)

  15. Wu, X.Y., Zhang, B.J., Liu, X.J., Xiao, Li, Wu, Y.H., Wang, Y., Wang, Q.C., Cheng, S.: Derivation of nonlinear Schrödinger equation. Int. J. Theor. Phys. 49, 2437–2445 (2010)

    Article  MATH  Google Scholar 

  16. Doebner, H.-D., Goldin, G.A.: On a general nonlinear Schrödinger equation admitting diffusion currents. Phys. Lett. A 162, 397–401 (1992)

    Article  MathSciNet  Google Scholar 

  17. Doebner, H.-D., Goldin, G.A.: Properties of nonlinear Schrödinger equations associated with diffeomorphism groups representations. J. Phys. A 27, 1771–1780 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nattermann, P., Zhdanov, R.: On Integrable Doebner–Goldin equations. J. Phys. A 29, 2869–2886 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Choudhuri, A., Porsezian, K.: Higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms: a model for sub-10-fs-pulse propagation. Phys. Rev. A88, 033808 (5 pages) (2013)

  20. Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Phys. Rev. E87, 053202 (20 pages) (2013)

  21. Griffiths, D.J.: Introduction to Quantum Mechanics, 2\(^{nd}\) Edition. Prentice Hall (2004)

  22. Itzykson C., Zuber J.B.: Quantum Field Theory. McGraw-Hill Book Co, Singapore (1985)

  23. El-Nabulsi, R.A.: Generalized Klein-Gordon and Dirac equations from nonlocal kinetic approach. Zeitschrift für Naturforschung A. doi:10.1515/zna-2016-0226

  24. Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC Press, Boca Raton (2002)

    MATH  Google Scholar 

  25. Bender, C.M., Mead, L.R., Milton, K.A.: Discrete time quantum mechanics. Comp. Math. Appl. 28(1–2), 279–317 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stovicek, P., Tolar, J.: Quantum mechanics in a discrete space-time. Rep. Math. Phys. 20(2), 157–170 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khorrami, M.: A general formulation of discrete-time quantum mechanics, restrictions on the action and the relation of unitarity to the existence theorem for initial-value problems. Ann. Phys. 244, 101–111 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Elze, H.-T.: Quantum mechanics and discrete time from “timeless” classical dynamics. Lect. Notes Phys. 633, 196–220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Walleczek, J., Groessing, G.: Is the world local or nonlocal? Towards an emergent quantum mechanics in the 21\(^{st}\) century. J. Phys.: Conf. Ser. 701, 012001 (10 pages) (2016)

  30. Berberan-Santos, M.N., Bodunov, E.N., Pogliani, L.: Classical and quantum study of the motion of a particle in a gravitational field. J. Math. Chem. 37(2), 101–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liemert, A., Kienle, A.: Fractional Schrödinger equation in the presence of the linear potential. Mathematics 4(31), 1–14 (2016)

    Google Scholar 

  32. Farhang Martin L., Hasan Bouzari, H., Ahmadi, F.: Solving Schrödinger equation specializing to the Stark effect in linear potential by the canonical function method. J. Theor. Appl. Phys. 8(140), 1–6 (2014)

  33. Johnson, R.P.: Solution to the Schrödinger Equation for a Linear 1-D Potential, Lecture Given at Santa Cruz Institute for Particle Physics. University of California at Santa Cruz, Autumn (2011)

    Google Scholar 

  34. Lorente, M.: Quantum mechanics on discrete space and time. In: Proceedings: M. Ferrero, A. van der Merwe, eds. New Developments on Fundamental Problems in Quantum Physics (Kluwer, N.Y. 1997) pp. 213–224

  35. Vaidman, L.: Tracing the past of a quantum particle. Phys. Rev. A89, 024102 (3 pages) (2014)

  36. Vaidman, L.: The past of a quantum particle. Phys. Rev. A87, 052104 (5 pages) (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. On nonlocal complexified Schrödinger equation and emergence of discrete quantum mechanics. Quantum Stud.: Math. Found. 3, 327–335 (2016). https://doi.org/10.1007/s40509-016-0080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-016-0080-z

Keywords

Navigation