Skip to main content
Log in

Generator of an abstract quantum walk

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

We give an explicit formula of the generator of an abstract Szegedy evolution operator in terms of the discriminant operator of the evolution. We also characterize the asymptotic behavior of a quantum walker through the spectral property of the discriminant operator by using the discrete analog of the RAGE theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, L., Davidovich, L., Zagury, N.: Quantum random walks. Phy. Rev. A 48, 1687–1690 (1993)

    Article  Google Scholar 

  2. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: ACM Symposium on Theory of Computing, pp. 37–49 (2001)

  3. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Q. Inf. 1, 507–518 (2003)

    Article  MATH  Google Scholar 

  4. Amrein, W.O., Georgescu, V.: On the characterization of bound states and scattering states in quantum mechanics. Helv. Phys. Acta 46, 635–658 (1973)

    MathSciNet  Google Scholar 

  5. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Q. Inf. Process. 1, 35–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Enss, V.: Asymptotic completeness for quantum mechanical potential scattering I. Short rage potentials. Commun. Math. Phys. 61, 285–291 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals, pp. 34–36. McGraw-Hill Inc, New York (1965)

    MATH  Google Scholar 

  8. Gudder, S.: Quantum Probability. Academic Press Inc., Boston (1988)

    MATH  Google Scholar 

  9. Grover, L.: A fast quantum mechanical algorithm for database search. In: ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  10. Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: Quantum graph walks I: mapping to quantum walks. Yokohama Math. J. 59, 33–55 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover walks on crystal lattices. J. Funct. Anal. 267, 4197–4235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Higuchi, Y., Segawa, E., Suzuki, A.: Spectral mapping theorem of an abstract quantum walk. arXiv:1506.06457

  13. Konno, N.: One-dimensional discrete-time quantum walks on random environments. Q. Inf. Process. 8, 387–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: ACM Symposium on Theory of Computing, pp. 575–584 (2007)

  16. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. III. Academic Press, New York (1979)

    MATH  Google Scholar 

  17. Ruelle, D.: A remark on bound states in potential-scattering theory. Nuovo Cimento A 61, 655–662 (1969)

    Article  MathSciNet  Google Scholar 

  18. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Annual IEEE Symposium on Foundations of Computer, pp. 32–41 (2004)

  19. Segawa, E.: Localization of quantum walks induced by recurrence properties of random walks. J. Comput. Theor. Nanos. 10, 1583–1590 (2013)

    Article  Google Scholar 

  20. Shikano, Y.: From discrete-time quantum walk to continuous-time quantum walk in limit distribution. J. Comput. Theor. Nanos. 10, 1558–1570 (2013)

    Article  Google Scholar 

  21. Shikano, Y., Katsura, H.: Localization and fractality in inhomogeneous quantum walks with self-duality. Phys. Rev. E 82, 031122 (2010)

    Article  MathSciNet  Google Scholar 

  22. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Q. Inf. Process. 11, 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Watrous, J.: Quantum simulations of classical random walks and undirected graph connectivity. J. Comput. Syst. Sci. 62, 376–391 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wiener, N.: The Fourier Integral and Certain of its Applications. Cambridge University Press, London (1935)

    Google Scholar 

Download references

Acknowledgments

The authors thank H. Ohno and Y. Matsuzawa for their useful comments. ES and AS also acknowledge financial supports of the Grant-in-Aid for Young Scientists (B) of Japan Society for the Promotion of Science (Grants No. 25800088 and No. 26800054, respectively). ES is also supported by the Japan-Korea Basic Scientific Cooperation Program “Non-commutative Stochastic Analysis: New Prospects of Quantum White Noise and Quantum Walk” (2015–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akito Suzuki.

Appendix

Appendix

1.1 Proof of Proposition 2.3

We present a proof of Proposition 2.3. Let H be the generator of an evolution \((U, \{\mathcal {H}_v \}_{v \in V}) \in \mathscr {F}_\mathrm{QW}\). Throughout this subsection, we assume that \(\mathrm{dim}\mathcal {H}_v < \infty \) (\(v \in V\)). Let \(\mathcal {H}_1\) be the set of vectors \(\Psi _0 \in \mathcal {H}\) satisfying

$$\begin{aligned} \lim _{N \rightarrow \infty } \frac{1}{N}\sum _{n=0}^{N-1} \nu _n^{\Psi _0}(R) = 0 \end{aligned}$$

for any finite subset R of V, and \(\mathcal {H}_2\) the set of vectors \(\Psi _0 \in \mathcal {H}\) satisfying

$$\begin{aligned} \lim _{m \rightarrow \infty } \sup _{n} \nu _n^{\Psi _0}(R_m^\mathrm{c}) = 0 \end{aligned}$$

for any sequence \(\{R_m\}\) of finite subsets of V such that \(R_m \subset R_{m+1}\) and \(V=\cup _m R_m\). Because \(\nu _n^{\alpha \Psi _0 + \beta \Phi _0}(R) \le 2 \left( |\alpha |^2 \nu _n^{\Psi _0}(R) + |\beta |^2 \nu _n^{\Phi _0}(R) \right) \), we know that \(\mathcal {H}_1\) and \(\mathcal {H}_2\) are subspaces of \(\mathcal {H}\). Let \(P_R = \sum _{x \in R} P_x\) (\(R \subset V\)). Then,

$$\begin{aligned} \nu _n^{\Psi _0}(R) = \left\| P_R \mathrm{e}^{in H} \Psi _0 \right\| ^2. \end{aligned}$$

Lemma 6.1

\(\mathcal {H}_1 \perp \mathcal {H}_2\).

Proof

Let \(\Psi _0 \in \mathcal {H}_1\) and \(\Phi _0 \in \mathcal {H}_2\). Then, for all \(R \subset V\),

$$\begin{aligned} |\langle \Psi _0, \Phi _0 \rangle |&= \frac{1}{N} \sum _{n=0}^{N-1} |\langle \Psi _n, \Phi _n \rangle | \\&\le \frac{1}{N} \sum _{n=0}^{N-1} |\langle P_R \Psi _n, P_R \Phi _n \rangle | + \frac{1}{N} \sum _{n=0}^{N-1} |\langle P_{R^\mathrm{c}} \Psi _n, P_{R^\mathrm{c}} \Phi _n \rangle | \\&\le \Vert \Phi _0\Vert \left( \frac{1}{N} \sum _{n=0}^{N-1} \Vert P_R \Psi _n\Vert \right) + \Vert \Psi _0\Vert \left( \frac{1}{N} \sum _{n=0}^{N-1} \Vert P_{R^\mathrm{c}} \Phi _n\Vert \right) . \end{aligned}$$

We first estimate the first term. By the Cauchy–Schwarz inequality,

$$\begin{aligned} \frac{1}{N} \sum _{n=0}^{N-1} \Vert P_R \Psi _n\Vert \le \left( \frac{1}{N} \sum _{n=0}^{N-1} \Vert P_R \Psi _n\Vert ^2 \right) ^{1/2} = \bar{\nu }_N^{\Psi _0}(R)^{1/2}. \end{aligned}$$

The second term is estimated as follows:

$$\begin{aligned} \frac{1}{N} \sum _{n=0}^{N-1} \Vert P_{R^\mathrm{c}} \Phi _n\Vert \le \sup _{n \ge 0} \Vert P_{R^\mathrm{c}} \Phi _n\Vert = \sup _{n \ge 0} \nu _n^{\Phi _0}(R^\mathrm{c})^{1/2}. \end{aligned}$$

Combining these inequalities yields the result that

$$\begin{aligned} |\langle \Psi _0, \Phi _0 \rangle | \le \Vert \Phi _0\Vert \bar{\nu }_N^{\Psi _0}(R)^{1/2} + \Vert \Psi _0\Vert \sup _{n \ge 0} \nu _n^{\Phi _0}(R^\mathrm{c})^{1/2}. \end{aligned}$$
(7.1)

Let \(\epsilon >0\) and \(\{R_m\}_{m\ge 1}\) be a family of finite subsets of V such that \(R_m \subset R_{m+1}\) and \(V = \cup _{m \ge 1} R_m\). Because \(\Phi _0 \in \mathcal {H}_2\), there exists an \(m_0 \in \mathbb {N}\) such that \(\nu _n^{\Phi _0}(R_m^\mathrm{c}) < \epsilon ^2/\Vert \Psi _0\Vert ^2\) (\(m \ge m_0\)). Because \(\Psi _0 \in \mathcal {H}_1\), it follows from (7.1) that

$$\begin{aligned} \lim _{N \rightarrow \infty } |\langle \Psi _0, \Phi _0 \rangle | \le \epsilon , \end{aligned}$$

which completes the proof. \(\square \)

Lemma 6.2

  1. (i)

    \(\mathcal {H}_\mathrm{c}(H) \subset \mathcal {H}_1\);

  1. (ii)

    \(\mathcal {H}_\mathrm{p}(H) \subset \mathcal {H}_2\).

Proof

Let \(\Psi _0 \in \mathcal {H}_\mathrm{c}(H)\). For any finite set R,

$$\begin{aligned} \bar{\nu }_N^{\Psi _0}(R) = \sum _{x \in R} \sum _{j =1}^{\mathrm{dim}\mathcal {H}_x} \bar{\nu }_N (\phi _{x,j}), \end{aligned}$$
(6.2)

where \(\{\phi _{x,j}\}\) is a complete orthonormal system of \(\mathcal {H}_x\) and \(\bar{\nu }_N (\phi )\) \(:= \frac{1}{N} \sum _{n=0}^{N-1}\) \(|\langle \phi , \mathrm{e}^{inH}\Psi _0 \rangle |^2\). Because, by assumption, the sum in (6.2) runs over a finite set, it suffices to show that \(\lim _{N \rightarrow \infty } \bar{\nu }_N (\phi ) = 0\). Let \(\omega (x) = \mathrm{e}^{in x}\) and \(g_N(\omega ) = \frac{1}{N}\sum _{n=0}^{N-1} \omega ^n\). Then, \(g_N(\omega ) = \frac{1-\omega ^N}{N(1-\omega )}\) if \(\omega \not =1\) and \(g_N(1) = 1\). By the Fubini theorem,

$$\begin{aligned} \bar{\nu }_N(\phi ) = \int _0^{2\pi } \int _0^{2\pi } g_N(\omega (\lambda -\mu )) \mathrm{d}\langle P_\mathrm{c}(H)\phi , E_H(\lambda ) \Psi _0 \rangle \mathrm{d}\langle \Psi _0, E_H(\mu ) P_\mathrm{c}(H) \phi \rangle , \end{aligned}$$

where \(P_\mathrm{c}(H)\) is the projection onto \(\mathcal {H}_\mathrm{c}(H)\). By the polarization identity, there exists \(\{\psi _j\}_{j=1,2,3,4} \subset \mathcal {H}_\mathrm{c}(H)\) such that

$$\begin{aligned} \bar{\nu }_N(\phi ) \le \mathrm{const.} \sum _{j,k=1,2,3,4} \int _0^{2\pi } \int _0^{2\pi } |g_N(\omega (\lambda -\mu ))| \mathrm{d}\Vert E_H(\lambda ) \psi _j\Vert ^2 \mathrm{d}\Vert E_H(\mu ) \psi _k\Vert ^2. \end{aligned}$$

Because \(F_j := \Vert E_H(\cdot ) \psi _j\Vert ^2\) is continuous,

$$\begin{aligned} \int \int _{\{(\lambda , \mu ) \mid \lambda =\mu \}} \mathrm{d}F_j(\lambda ) \mathrm{d}F_k(\mu )&\le \int _0^{2\pi } \mathrm{d}F_k(\mu ) \int _{\mu -\epsilon }^{\mu + \epsilon } \mathrm{d}F_j(\lambda ) \\&= \int _0^{2\pi } \mathrm{d}F_k(\mu ) (F_j(\mu + \epsilon ) - F_j(\mu - \epsilon )) \rightarrow 0, \end{aligned}$$

as \(\epsilon \rightarrow 0\). Because \(\sup _{|\omega |=1} |g_N(\omega )| \le 1\) and \(\lim _{N \rightarrow \infty } g_N(\omega (\lambda -\mu )) = 0\) (\(\lambda \not =\mu \)), we obtain \(\lim _{N\rightarrow 0} \bar{\nu }_N(\phi ) =0\) by the dominated convergence theorem. This completes the proof of (i).

Let \(\Psi _0 \in \mathcal {H}_\mathrm{p}(H)\). For any \(\epsilon > 0\), there exist eigenvectors \(\{ \phi _j\}_{j=1}^M\) (\(M \in \mathbb {N}\)) of H such that \(\Vert \Psi _0 - \sum _{j=1}^M \langle \phi _j, \Psi _0 \rangle \phi _j \Vert < \epsilon \). Let \(\{R_m\}\) be a sequence of finite subsets of V such that \(R_m \subset R_{m+1}\) and \(\cup _m R_m = V\). It follows that

$$\begin{aligned} \nu _n^{\Psi _0}(R_m^\mathrm{c})^{1/2} \le \sum _{j=1}^M |\langle \phi _j, \Psi _0 \rangle | \Vert P_{R_m^\mathrm{c}} \phi _j \Vert + \epsilon , \end{aligned}$$

which proves \(\lim _{m \rightarrow \infty } \sup _n \nu _n^{\Psi _0}(R_m^\mathrm{c}) = 0\). Hence, we have (ii). \(\square \)

Proof of Proposition 2.3

Combining Lemmas 6.1 and 6.2 yields the result that

$$\begin{aligned} \mathcal {H}_2 \subset \mathcal {H}_1^\perp \subset \mathcal {H}_\mathrm{p}(H) \subset \mathcal {H}_2, \quad \mathcal {H}_1 \subset \mathcal {H}_2^\perp \subset \mathcal {H}_\mathrm{c}(H) \subset \mathcal {H}_1, \end{aligned}$$

which proves the proposition. \(\square \)

1.2 Proof of Equation (2.4)

In this subsection, we prove the following:

Lemma 6.3

Let \((U, \{\mathcal {H}_v\}_{v \in V}) \in \mathscr {F}_{QW}\) and \(\Psi _0 \in \mathcal {H}\) satisfy

$$\begin{aligned} \lim _{m \rightarrow \infty } \sup _n \nu _n^{\Psi _0}(R_m^\mathrm{c}) = 0 \end{aligned}$$

for an increasing sequence \(\{R_m \}\) of finite subsets of V. Then, (2.4) holds. In particular, (2.4) holds for all \(\Psi _0 \in \mathcal {H}_\mathrm{p}(H)\).

Proof

By assumption, we know that for any \(\epsilon > 0\), there exists \(m_0 \in \mathbb {N}\) such that \(\sup _n \nu _n^{\Psi _0}(R_{m_0}^\mathrm{c}) < \epsilon \). Hence,

$$\begin{aligned} \limsup _{n \rightarrow \infty } \nu _n^{\Psi _0} (R_{m_0}) \ge 1- \epsilon . \end{aligned}$$
(6.3)

If \(\limsup _n \nu _n^{\Psi _0}(x) = 0\) for any \(x \in R_{m_0}\), then

$$\begin{aligned} \limsup _n \nu _n^{\Psi _0}(R_{m_0}) = \sum _{x \in R_{m_0}} \limsup _n \nu _n^{\Psi _0}(x) = 0, \end{aligned}$$

which contradicts (6.3). Therefore, (2.4) holds for some \(x \in R_{m_0}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segawa, E., Suzuki, A. Generator of an abstract quantum walk. Quantum Stud.: Math. Found. 3, 11–30 (2016). https://doi.org/10.1007/s40509-016-0070-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-016-0070-1

Keywords

Navigation