Skip to main content
Log in

Noncooperative games, coupling constraints, and partial efficiency

  • Research Article
  • Published:
Economic Theory Bulletin Aims and scope Submit manuscript

Abstract

Many noncooperative settings require sharing of aggregate holdings—be these of natural resources, production tasks, or pollution permits. This paper considers instances where the shared items eventually become competitively priced. For that reason, the solution concept incorporates features of Nash and Walras equilibria. Focus is on how the concerned agents, by themselves, may reach an outcome of such sort. A main mechanism is direct bilateral exchange, repeated time and again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Examples include modern markets for use or ownership of natural resources.

  2. Many cases make this device superfluous; it is included here for flexibility and generality.

  3. A most convenient setting would feature payoff functions \(\pi _{i}:\mathbb { X\rightarrow R}\). Alternatively, M,  as defined by (4), could be non-empty on X, and the latter set has non-empty interior.

  4. More generally, M(x) is non-empty and bounded at each point \(x\in X\) considered in the sequel.

  5. Alternatively, absent monotonicity in \(z_{i}\), one may require right away that \(\sum _{i\in I}z_{i}=\sum _{i\in I}e_{i}\) in the definition of X. In either case, \(\pi _{i}\) might depend on the constant aggregate holding \( \sum _{i\in I}z_{i}.\)

  6. Many followers of Walras accommodate an extra, fictitious player—a custodian of market balance—who sets p so as to reduce the value of excess supply \(\sum _{i\in I}e_{i}-\sum _{i\in I}z_{i};\) see Mas-Colell et al. (1995).

  7. It mimics the one which applies to constrained concave optimization, using projected supergradients.

References

  • Arrow, K.J.: Rationality of self and others in an economic system. J. Bus. 59, 385–399 (1986)

    Article  Google Scholar 

  • Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  Google Scholar 

  • Benveniste, A., Métivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations. Springer, Berlin (1990)

    Book  Google Scholar 

  • Feldman, A.M.: Bilateral trading processes, pairwise optimality, and Pareto optimality. Rev. Econ. Stud. 4, 463–473 (1973)

    Article  Google Scholar 

  • Flåm, S.D., Antipin, A.S.: Equilibrium programming using proximal-like algorithms. Math. Progr. 78, 29–41 (1997)

    Article  Google Scholar 

  • Flåm, S.D.: Equilibrium, evolutionary stability and gradient dynamics. Int. Game Theory Rev. 4(4), 357–370 (2002)

    Article  Google Scholar 

  • Flåm, S.D., Jourani, A.: Strategic behavior and partial cost sharing. Games Econ. Behav. 43, 44–56 (2003)

    Article  Google Scholar 

  • Flåm, S.D., Ruszczynski, A.: Computing normalized equilibria in convex-concave games. Int. Game Theory Rev. 10(1), 37–51 (2003)

    Article  Google Scholar 

  • Flåm, S.D., Gramstad, K.: Direct exchange in linear economies. Int. Game Theory Rev. 14, 4 (2012)

    Article  Google Scholar 

  • Flåm, S.D., Gramstad, K.: Reaching equilibrium in emission and resource markets, submitted (2015)

  • Flåm, S.D.: Bilateral exchange and competitive equilibrium, to appear in Set- Valued and Variational Analysis (2015)

  • Forgó, F., Szép, J., Szidarovski, F.: Introduction to the Theory of Games. Springer, Berlin (1999)

  • Gintis, H.: The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences. Princeton University Press, Princeton, New Jersey (2009)

    Google Scholar 

  • Hart, S., Mas-Colell, A.: Simple Adaptive Strategies: From Regret-Matching to Uncoupled Dynamics. World Scientific, Singapore (2013)

    Book  Google Scholar 

  • Mas-Colell, A., Whinston, M.D., Green, J.: Microeconomic Theory. Oxford University Press, Oxford (1995)

    Google Scholar 

  • Necoara, I., Nesterov, Y., Glineur, F.: A random coordinate descent method on large-scale optimization problems with linear constraints. http://acse.pub.ro/person/ion-necoara (2015)

  • Osborne, M.J., Rubinstein, A.: Bargaining and Markets. Academic Press, New York (1990)

    Google Scholar 

  • Outrata, J.V., Ferris, M.C., Červinka, M., Outrata, M.: On Cournot–Nash–Walras equilibria and their computation. http://www.optimization-online.org/DB-HTML/2015/09/5128.html (2015)

  • Peyton Young, H.: Strategic Learning and its Limits. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  • Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965)

    Article  Google Scholar 

  • Smith, V.L.: Papers in Experimental Economics. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  • Smith, V.L.: Rationality in Economics. Cambridge Univ Press, Cambridge (2008)

    Google Scholar 

  • Tseng, P., Yun, S.: Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization. J. Optim. Theory Appl. 140, 513–535 (2009)

    Article  Google Scholar 

  • Xiao, L., Boyd, S.: Optimal scaling of a gradient method for distributed resource allocation. J. Optim. Theory Appl. 129(3), 469–488 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due: for support CESifo, München and the Arne Ryde Foundation, Lund–and for hospitality the University of Alicante.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjur Didrik Flåm.

Appendix 1: Proofs

Appendix 1: Proofs

Proof of Proposition 3.1

The “best response” correspondence

$$\begin{aligned} x\in X\rightrightarrows \mathcal {B}(x):=\arg \max _{\hat{x}\in X}\pi (\hat{x} ,x)\subseteq X \end{aligned}$$

has non-empty convex values. If a convergent sequence \((\hat{x} ^{k},x^{k})\rightarrow (\hat{x},x)\) satisfies \(\hat{x}^{k}\in \mathcal {B} (x^{k}),\) with \(x^{k}\in X,\) it holds for any \(\chi \in X\) that

$$\begin{aligned} \pi (\hat{x},x)\ge \lim \sup _{k}\pi (\hat{x}^{k},x^{k})\ge \lim \sup _{k}\pi (\chi ,x^{k})\ge \pi (\chi ,x). \end{aligned}$$

Hence, \(\hat{x}\in \mathcal {B}(x)\). This tells that \(\mathcal {B}\) has closed graph. By Kakutani’s theorem, there is a fixed point \(x\in \mathcal {B} (x)\). Any such point is a normalized equilibrium. \(\square \)

Proof of Proposition 3.2

x is a normalized equilibrium iff

$$\begin{aligned} x\in \arg \max \left\{ \pi (\cdot ,x)+\mathcal {\iota }_{X}(\cdot )\right\} \Longleftrightarrow 0\in \partial \left\{ \pi (\cdot ,x)+\mathcal {\iota } _{X}(\cdot )\right\} (x)=M(x)-N(x). \end{aligned}$$

The last equality, which derives from the above constraint qualification, holds iff there exists some \(m\in M(x)\cap N(x).\) This proves the first bullet. For the second, note that any \(m\in N(x)\) yields \( \left\langle m,X-x\right\rangle \le 0\) by definition (3). For the third bullet, recall Moreau’s orthogonal decomposition, saying that \(m=\tau +n,\) with \(\tau \in T(X,x),\) \(n\in N(x)\) and \(\left\langle n,\tau \right\rangle =0\); see Prop.0.6.3 in Aubin and Cellina (1984). In fact, \( \tau =P_{T(X,x)}\left[ m\right] \) so that \(\tau =0\Longleftrightarrow m\in N(x).\) \(\square \)

Proof of Proposition 4.1

Let \(x(\cdot )\) be a solution to (7). Use the norm \(\left\| x\right\| :=\left\langle x,x\right\rangle ^{1/2}\) to define a Lyapunov function \(\mathcal {L} (t):=\left\| x(t)-\bar{x}\right\| ^{2}/2\) for \(t\ge 0.\) Under (8), as long as \(x=x(t)\in X\) differs from \(\bar{x},\) it holds almost everywhere

$$\begin{aligned} \begin{array}{rl} \mathcal {\dot{L}}= &{} \left\langle x-\bar{x},\dot{x}\right\rangle \in \left\langle x-\bar{x},P_{T(x)}\left[ M(x)\right] \right\rangle \\ \subseteq &{} \left\langle x-\bar{x},M(x)-N(x)\right\rangle \le \left\langle x-\bar{x},M(x)\right\rangle <0. \end{array} \end{aligned}$$

The inclusion \(\subseteq \) stems from the Moreau’s decomposition theorem, mentioned above. Further, the first inequality followed from (3) which tells that \(\left\langle \bar{x}-x,N(x)\right\rangle \le 0.\) This proves the global asymptotic stability of \(\bar{x}\) as a steady state of ( 7). That is, \(x(t)\rightarrow \bar{x}.\) Then clearly, \(\bar{x}\) must be unique.

Quite likewise, the relaxed system yields

$$\begin{aligned} \mathcal {\dot{L}}=\left\langle x-\bar{x},\dot{x}\right\rangle \in \left\langle x-\bar{x},M(x)-N(x)\right\rangle , \end{aligned}$$

and the same arguments apply. \(\square \)

Lemma 1

(On outer semicontinuity of margins). The correspondence \(x\in X\rightrightarrows M(x)\) has closed graph. Hence, M is outer (upper) semicontinuous, and M(X) must be bounded.

Proof of Lemma 1

If some convergent sequence \((m^{k},x^{k}) \rightarrow (m,x)\) satisfies \(m^{k}\in M(x^{k})\) with \(x^{k}\in X,\) it holds for any \(\chi \in \mathbb {X}\) that

$$\begin{aligned} \pi (\chi ,x^{k})\le \pi (x^{k},x^{k})+\left\langle m^{k},\chi -x^{k}\right\rangle . \end{aligned}$$

Passing to the limit, we obtain

$$\begin{aligned} \pi (\chi ,x)\le \pi (x,x)+\left\langle m,\chi -x\right\rangle , \end{aligned}$$

hence \(m\in M(x).\) Since X is compact, M is outer semicontinuous, and M(X) must be bounded. \(\Diamond \)

Proof of Proposition 4.2

Let \(\bar{x}\) be the unique normal equilibrium. By Lemma 1, it holds for any number \(\varepsilon >0\) that

$$\begin{aligned} \sup \left\{ \left\langle M(x),x-\bar{x}\right\rangle :\left\| x-\bar{x} \right\| \ge \varepsilon , x\in X\right\} <0. \end{aligned}$$
(23)

From here on the argument is known, but included for completeness.Footnote 7 Pick \(m^{k}\in M(x^{k})\) such that \(x^{k+1}=P_{X} \left[ x^{k}+s_{k}m^{k}\right] .\) Since orthogonal projection \(P_{X}\) onto X is non-expansive,

$$\begin{aligned} \left\| x^{k+1}-\bar{x}\right\| ^{2}= & {} \left\| P_{X}\left[ x^{k}+s_{k}m^{k}\right] -P_{X}\left[ \bar{x}\right] \right\| ^{2}\le \left\| x^{k}+s_{k}m^{k}-\bar{x}\right\| ^{2} \\= & {} \left\| x^{k}-\bar{x}\right\| ^{2}+2s_{k}\left\langle x^{k}-\bar{x} ,m^{k}\right\rangle +s_{k}^{2}\left\| m^{k}\right\| ^{2}. \end{aligned}$$

(8) tells that \(\left\langle x^{k}-\bar{x},m^{k}\right\rangle \le 0.\) Upon introducing non-negative numbers

$$\begin{aligned} A_{k}:=\left\| x^{k}-\bar{x}\right\| ^{2}, B_{k}:=0, \quad C_{k}:=2s_{k}\left\langle \bar{x}-x^{k},m^{k}\right\rangle , \quad D_{k}:=s_{k}^{2}\sup \left\| M(X)\right\| ^{2}, \end{aligned}$$

the string, stated just here above, takes the form

$$\begin{aligned} A_{k+1}\le A_{k}(1+B_{k})-C_{k}+D_{k} \end{aligned}$$

with \(\sum _{k=0}^{\infty }B_{k}=0\) and \(\sum _{k=0}^{\infty }D_{k}<+\infty .\) From the Robbins–Siegmund Lemma, restated as another Lemma below, it follows that \(A_{k}\) converges to some \(A\ge 0,\) and \(\sum _{k=0}^{\infty }C_{k}<+\infty \). It remains to show that \(A=0.\) Otherwise, take \( \varepsilon :=A/2>0\) to have from (23), that \( \left\langle x^{k}-\bar{x},m^{k}\right\rangle <0\) is bounded away from 0 for sufficiently large k. This gives the contradiction \(\sum _{k=0}^{\infty }C_{k}=+\infty \). \(\square \)

Proof of Theorem 7.1

At any stage \(k=0,1,2, \ldots ,\) consider the prevailing profile \(x^{k}\in X,\) and two agents \(i^{k},j^{k}\) just when these are about to update their actual endowments \(z_{i}^{k}\) and \(z_{j}^{k}\) . For simpler notation, temporarily omit mention of k. Note that bilateral trade (17) amounts to posit

$$\begin{aligned} x^{+1}=x+sd \end{aligned}$$
(24)

with \(d_{i}:=(0,d_{ij})\in \mathbb {Y}_{i}\times \mathbb {Z}\), \( d_{j}:=(0,-d_{ij})\in \mathbb {Y}_{j}\times \mathbb {Z},\) all other components of \(d\in \mathbb {X}\) being nil. Since M is bounded on X, one may assume that each such d be bounded in norm by some constant \(\delta >0.\)

Let \(\bar{x}\) denote the unique normal equilibrium. From (24) it follows that

$$\begin{aligned} \left\| x^{+1}-\bar{x}\right\| ^{2}&=\left\| x+sd-\bar{x}\right\| ^{2}=\left\| x-\bar{x}\right\| ^{2}+2s\left\langle x-\bar{x},d\right\rangle +s^{2}\left\| d\right\| ^{2} \\&\le \left\| x-\bar{x}\right\| ^{2}+2s\left\{ \left\langle x_{i}-\bar{x} _{i},(0,d_{ij})\right\rangle -\left\langle x_{j}-\bar{x}_{j},(0,d_{ij}) \right\rangle \right\} +s^{2}\delta ^{2}. \end{aligned}$$

Invoke (4), \(y^{+1}\in Nash(z),\) and (18), (21) to see that, for agent i

$$\begin{aligned} (0,d_{ij})=\left[ m_{i}-n_{i}\right] -\left[ m_{j}-n_{j}\right] \in \left[ M_{i}(x)-N(X_{i},x_{i})\right] -\left[ M_{j}(x)-N(X_{j},x_{j})\right] , \end{aligned}$$

and likewise for his interlocutor j.

Let \(\mathcal {\nu }:=\#I\ge 2\) denote the number of agents. Any pair (ij) of distinct agents is selected with probability \(1/\left( {\begin{array}{c}\mathcal {\nu }\\ 2\end{array}}\right) = \frac{2}{\mathcal {\nu }(\mathcal {\nu }-1)}.\) Repeated draws are independent of each other. In the last string of inequalities take expectation E with respect to drawing the agent pair (ij). By (21) this gives

$$\begin{aligned} E\left\| x^{+1}-\bar{x}\right\| ^{2}\le \left\| x-\bar{x} \right\| ^{2}+\frac{2}{( \begin{array}{c} \mathcal {\nu } \\ 2 \end{array} )}\sum _{i}\sum _{j}s\left\langle x_{i}-\bar{x}_{i},m_{i}-n_{i}-m_{j}+n_{j} \right\rangle +s^{2}\delta ^{2} \end{aligned}$$
(25)

To grasp the nature of the last inequality, let

$$\begin{aligned} \mathbb {D}:=\left\{ d=(d_{i})\in \mathbb {X}:\sum _{i\in I}d_{i}=0\right\} , \end{aligned}$$

denote the space of “redistributions,” and consider the orthogonal projection \(P_{\mathbb {D}}\left[ \cdot \right] \) from the ambient space \(\mathbb {X}\) onto \(\mathbb {D}\). Given any vector \( v=(v_{i})\in \mathbb {X},\) it holds for each i:

$$\begin{aligned} P_{\mathbb {D}}\left[ v\right] _{i}=v_{i}-\frac{1}{\mathcal {\nu }}\sum _{j\in I}v_{j}. \end{aligned}$$

The particular instance \(v_{i}=m_{i}-n_{i}\in M_{i}(x_{i})-N(X_{i},x_{i}),\) yields

$$\begin{aligned}&\frac{1}{\mathcal {\nu }}\sum _{i}\sum _{j}\left\langle x_{i}-\bar{x}_{i}, \left[ m_{i}-n_{i}\right] -\left[ m_{j}-n_{j}\right] \right\rangle \\&\quad =\sum _{i}\left\langle x_{i}-\bar{x}_{i},\left[ m_{i}-n_{i}\right] -\frac{1 }{\mathcal {\nu }}\sum _{j}\left[ m_{j}-n_{j}\right] \right\rangle =\left\langle x-\bar{x},P_{\mathbb {D}}\left[ m-n\right] \right\rangle \\&\quad \in \left\langle x-\bar{x},M(x)-N(x,X)-N(x,\mathbb {D})\right\rangle =\left\langle x-\bar{x},M(x)-N(X,x)\right\rangle \\&\quad \le \left\langle x-\bar{x},M(x)\right\rangle . \end{aligned}$$

Combined with (25) the last inequality implies

$$\begin{aligned} E\left\| x^{+1}-\bar{x}\right\| ^{2}\le \left\| x-\bar{x} \right\| ^{2}-\frac{4s}{(\mathcal {\nu }-1)}\left\langle M(x),\bar{x} -x\right\rangle +s^{2}\delta ^{2}. \end{aligned}$$

Reintroducing the allocation \(x^{k}\) which prevails at stage k, it holds for \(k=0,1,...\)

$$\begin{aligned} E\left\| x^{k+1}-\bar{x}\right\| ^{2}\le \left\| x^{k}-\bar{x} \right\| ^{2}-\frac{4s_{k}}{(\mathcal {\nu }-1)}\left\langle M(x^{k}),\bar{ x}-x^{k}\right\rangle +s_{k}^{2}\delta ^{2}. \end{aligned}$$
(26)

Now invoke the following auxiliary result due to Robbins and Siegmund; see 5.2.1 in Benveniste et al. (1990):

Lemma 2

(On a “supermartingale”) Suppose \(A_{k},B_{k},C_{k},D_{k}\) are finite, non-negative random variables, adapted to a \(\sigma \)-field \( \mathcal {F}_{k}\subseteq \mathcal {F}_{k+1}\), which satisfy

$$\begin{aligned} E\left[ A_{k+1}\left| \mathcal {F}_{k}\right. \right] \le A_{k}(1+B_{k})-C_{k}+D_{k}. \end{aligned}$$

Then, on the event \( \left\{ \sum _{k}B_{k}<\infty \& \sum _{k}D_{k}<\infty \right\} ,\) it holds almost surely that \( \sum _{k}C_{k}<+\infty \) & \(A_{k}\rightarrow \) some finite A. \( \Diamond \)

In the present setting, let \(\mathcal {F}_{k}\) be generated by \(\left\{ x^{0},\ldots ,x^{k}\right\} .\) In view of (26), posit

$$\begin{aligned} A_{k}:=\left\| x^{k}-\bar{x}\right\| ^{2}, \quad B_{k}:=0, \quad C_{k}:=\frac{4s_{k}}{(\mathcal {\nu }-1)}\left\langle M(x^{k}), \quad \bar{x} -x^{k}\right\rangle , and D_{k}:=s_{k}^{2}\delta ^{2}. \end{aligned}$$

For sure, \(\sum _{k}B_{k}<+\infty \) and \(\sum _{k}D_{k}<+\infty \). Now consider a scenario such that \(A>0\)—if any. Along the corresponding trajectory,

$$\begin{aligned} \lim \inf \left\{ \left\langle m^{k},\bar{x}-x^{k}\right\rangle \right\} >0, \end{aligned}$$

hence \(\sum _{k}C_{k}=+\infty \). This contradiction tells that \(A=0\ \)almost surely. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flåm, S.D. Noncooperative games, coupling constraints, and partial efficiency. Econ Theory Bull 4, 213–229 (2016). https://doi.org/10.1007/s40505-015-0079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40505-015-0079-3

Keywords

JEL Classification

Navigation