Skip to main content
Log in

Root growth in Orchid Dendrobium cv. Sonia requires shade avoidance response of phytochromes along with regulation of auxin pathway genes

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Orchid Dendrobium Sonia has wide demand in floral market throughout the world due to its vibrant coloured flowers, flowering recurrence and dense inflorescence. Effects of different monochromatic lights (red, far-red, blue, white) on different developmental and growth responses such as seed gemination, shoot and root growth, chlorophyll and carotenoid accumulation were studied in Dendrobium Sonia. Asymbiotic seed germination was highest under blue or white light (80%, p < 0.001) and least under far-red (55%, p < 0.001) suggesting that it could either be controlled by an exceptional novel function of Cryptochrome 1 or the blue wavelengths perceived by PHYA or PHYB in Dendrobium Sonia. All analyses were done in 6-months-old plants till 1 year of age. Shoot length increased significantly in white or red light (3.7-fold, 3.5-fold respectively) while was least under far-red (decreased by 1.6-fold) indicating the major regulatory role of PHYB for shoot growth. Root growth in red light in Dendrobium Sonia was more similar to hypocotyl adventitious root (HAR) formation considering the PHYB transcript expression. We suggest that the root growth (HAR) under red light in Dendrobium Sonia is partly attributed to PHYB, negatively regulated with HY5 and positively associated with auxin biosynthesis and accumulation gene BABY BOOM (BBM2) and efflux carriers such as LIKE AUXIN RESISTANT 2 and 3 (LAX2, LAX3). Highest chlorophyll content under far-red and blue might be a hyper-response of shade avoidance response under far-red light in Dendrobium Sonia. Taxonomic tree analysis finds Dendrobium Sonia closer to Phalaenopsis and Dendrobium catenatum. The three phytochromes and one cryptochrome sequences were similar to PHYA, PHYB, PHYC and CRY1 respectively. CRY1 was retrieved with one more isoform CRY1_X2, with all these sequences more similar to those of Oryza sativa. Further study can clarify the indicating reason of a probable gene loss which is evident from the absence of any sequence similar to CRY2 in root RNA isolates of Dendrobium Sonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All related data are available within the manuscript and its online supplementary files. All data related to De novo transcriptome assembly can be found in the publicly available at NCBI GEO repository ID: GSE252123 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE252123; Reviewers token number to view the NCBI submission: yrqzoqwmzbivdqf.

References

  • Alallaq, S., Ranjan, A., Brunoni, F., Novák, O., Lakehal, A., & Bellini, C. (2020). Red light controls adventitious root regeneration by modulating hormone homeostasis in Picea abies seedlings. Frontiers in Plant Science, 11, 586140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrero, J. M., Downie, A. B., Xu, Q., & Gubler, F. (2014). A role for Barley CRYPTOCHROME1 in light regulation of grain dormancy and germination. The Plant Cell, 26(3), 1094–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billore, V., Jain, M., & Suprasanna, P. (2017). Monochromic radiation through light-emitting diode (LED) positively augments in vitro shoot regeneration in Orchid (Dendrobium sonia). Canadian Journal of Biotechnology, 1(2), 50.

    Article  Google Scholar 

  • Biswal, D. P., Panigrahi K. C. S. (2022). Red light and glucose enhance cytokinin-mediated bud initial formation in Physcomitrium patens. Plants, 11(5), 707.

  • Biswas, S. S., Singh, D. R., De, L. C., Kalaivanan, N. S., Pal, R. & Janakiram, T. (2021). A comprehensive scenario of orchid nutrition–a review. Journal of Plant Nutrition, 44(6), 905–917.

  • Chase, M. W. (2005). Classification of Orchidaceae in the age of DNA data. Curtis’s Botanical Magazine, 22(1), 2–7.

    Article  Google Scholar 

  • Chase, M. W., Cameron, K. M., Freudenstein, J. V., Pridgeon, A. M., Salazar, G., Berg, C. V. D., & Schuiteman, A. (2015). An updated classification of Orchidaceae. Botanical Journal of the Linnean Society, 177, 151–174.

    Article  Google Scholar 

  • Ching, L., Antony, J., Poobathy, R., & Subramaniam, S. (2012). Encapsulation-vitrification of Dendrobium sonia-28 supported by histology. Plant Omics, 5, 345–350.

    CAS  Google Scholar 

  • Dehgahi, R., Subramaniam, S., Zakaria, L., & Joniyas, A. (2016). Review of research on in vitro selection of Dendrobium sonia-28 against Fusarium proliferatum. Int. J. Sci. Res. in Agricultural Sciences, 3, 50–61.

    Google Scholar 

  • Dueck, T., Trouwborst, G., Hogewoning, S. W., & Meinen, E. (2016). Can a high red: Far red ratio replaces temperature-induced inflorescence development in Phalaenopsis? Environmental and Experimental Botany, 121, 139–144.

    Article  CAS  Google Scholar 

  • Galinha, C., Hofhuis, H., Luijten, M., Willemsen, V., Blilou, I., Heidstra, R., & Scheres, B. (2007). PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature, 449(7165), 1053–1057.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Habiba, S. U., Shimasaki, K., Ahasan, M. M., & Alam, M. M. (2014). Effects of different light quality on growth and development of protocorm-like bodies (PLBs) in Dendrobium kingianum cultured in vitro. Bangladesh Res. Public J, 10, 223–227.

    Google Scholar 

  • Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J., Sena, G., Hauser, M. T., & Benfey, P. N. (2000). The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 101(5), 555–567.

    Article  CAS  PubMed  Google Scholar 

  • Hernando, C. E., Murcia, M. G., Pereyra, M. E., Sellaro, R., & Casal, J. J. (2021). Phytochrome B links the environment to transcription. Journal of Experimental Botany, 72(11), 4068–4084.

    Article  CAS  PubMed  Google Scholar 

  • Hu, W. W., Wong, S. M., Loh C.S., Goh, C.J. (1998). Synergism in replication of cymbidium mosaic potexvirus (CymMV) and odontoglossum ringspot tobamovirus (ORSV) RNA in orchid protoplasts. Archives of Virology, 143, 1265–1275.

  • Islam, O. M., Matsui, S., & Ichihashi, S. (1999). Effects of light quality on seed germination and seedling growth of Cattleya orchids in vitro. Journal of the Japanese Society for Horticultural Science, 68(6), 1132–1138.

    Article  CAS  Google Scholar 

  • Julkiflee, A. L., & Uddain, J. (2014). Efficient micropropagation of Dendrobium sonia-28 for rapid PLBs proliferation. Emirates Journal of Food and Agriculture, 25, 545–551.

    Article  Google Scholar 

  • Kochetova, G. V., Avercheva, O. V., Bassarskaya, E. M., & Zhigalova, T. V. (2022). Light quality as a driver of photosynthetic apparatus development. Biophysical Reviews, 14(4), 779–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari, S., & Panigrahi, K. C. (2019). Light and auxin signaling cross-talk programme root development in plants. Journal of Biosciences, 44, 1–5.

    Article  Google Scholar 

  • Le, V. T., & Tanaka, M. (2004). Effects of red and blue light-emitting diodes on callus induction, callus proliferation, and protocorm-like body formation from callus in Cymbidium orchid. Environment Control in Biology, 42(1), 57–64.

    Article  Google Scholar 

  • Lee, H. B., An, S. K., Lee, S. Y., & Kim, K. S. (2017). Vegetative growth characteristics of Phalaenopsis and Doritaenopsis plants under different artificial lighting sources. Horticultural Science & Technology, 35(1), 21–29.

    Article  CAS  Google Scholar 

  • Leite, C. A., Ito, R. M., Lee, G. T. S., Ganelevin, R., & Fagnani, M. A. (2008). Light spectrum management using colored nets to control the growth and blooming of Phalaenopsis. Acta Horticulture, 770, 177–184.

    Article  Google Scholar 

  • Li, H., Ye, W., Wang, Y., Chen, X., Fang, Y., & Sun, G. (2021). RNA sequencing-based exploration of the effects of far-red light on lncRNAs involved in the shade-avoidance response of D. officinale. PeerJ, 9, e10769.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, M. H., Liu, K. W., Li, Z., Lu, H. C., Ye, Q. L., Zhang, D., Wang, J. Y., Li, Y. F., Zhong, Z. M., Liu, X., & Yu, X. (2022). Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nature Plants, 8(4), 373–388.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Li, Q. Q., Zhang, Z., Wang, Y. L., Zhong, L. Y., Chao, Z. F., Gao, Y. Q., Han, M. L., Xu, L., & Chao, D. Y. (2021). Phytochrome B inhibits darkness-induced hypocotyl adventitious root formation by stabilizing IAA14 and suppressing ARF7 and ARF19. The Plant Journal, 105(6), 1689–1702.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, R. G., & Runkle, E. S. (2005). Environmental physiology of growth and flowering of orchids. Hort Science, 40(7), 1969–1973.

    Google Scholar 

  • Martin, K. P., & Madassery, J. (2006). Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants, and protocorm-like bodies. Scientia Horticulturae, 108(1), 95–99.

    Article  CAS  Google Scholar 

  • Mathews, S., & Tremonte, D. (2012). Tests of the link between functional innovation and positive selection at phytochrome A: The phylogenetic distribution of far-red high-irradiance responses in seedling development. International Journal of Plant Sciences, 173, 662–672.

    Article  CAS  Google Scholar 

  • Miotto, Y. E., da Costa, C. T., Offringa, R., Kleine-Vehn, J., & Maraschin, F. D. (2021). Effects of light intensity on root development in a D-root growth system. Frontiers in Plant Science, 12, 2761.

    Article  Google Scholar 

  • Moran, R., & Porath, D. (1980). Chlorophyll determination in intact tissues using N, N-Dimethylformamide. Plant Physiology, 65(3), 478–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira, P. M., Rodrigues, M. A., Gonçalves, A. Z., & Kerbauy, G. B. (2019). Exposure of Catasetum fimbriatum aerial roots to light coordinates carbon partitioning between source and sink organs in an auxin dependent manner. Plant Physiology and Biochemistry, 135, 341–347.

    Article  CAS  PubMed  Google Scholar 

  • Paik, I., & Huq, E. (2019). Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. In Seminars in Cell & Developmental Biology, 92, 114–121.

    Article  CAS  Google Scholar 

  • Panigrahy, M. (2004). Characterization of mutants involved in Phytochrome A signal transduction. PhD Thesis, FreiDok plus - Characterisation of mutants involved in Phytochrome A nuclear import and signal transduction (uni-freiburg.de), pp. 4–9

  • Panigrahy, M., Majeed, N., & Panigrahi, K. C. (2020). Low-light and its effects on crop yield: Genetic and genomic implications. Journal of Biosciences, 45, 1–5.

    Article  Google Scholar 

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porra, R. J., Thompson, W. A., and Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta - Bioenerg, 975, 384–394.

  • Pratama, A. N., Grandmottet, F., Kongbangkerd, A., Sujipuli, K., & Ratanasut, K. (2023). Low-light intensity reprogramed flower pigmentation in Dendrobium Sonia via downregulation of dihydroflavonol 4-reductase and anthocyanidin synthase genes. Scientia Horticulturae, 312, 111853.

    Article  CAS  Google Scholar 

  • Priya, P., Patil, M., Pandey, P., Singh, A., Babu, V. S., & Senthil-Kumar, M. (2023). Stress combinations and their interactions in plants database: A one-stop resource on combined stress responses in plants. The Plant Journal, 116, 1097–1117.

    Article  CAS  PubMed  Google Scholar 

  • Raya-González, J., Ortiz-Castro, R., Ruíz-Herrera, L. F., Kazan, K., & López-Bucio, J. (2014). PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 regulates lateral root formation via auxin signaling in Arabidopsis. Plant Physiology, 165(2), 880–894.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salisbury, F. J., Hall, A., Grierson, C. S., & Halliday, K. J. (2007). Phytochrome coordinates Arabidopsis shoot and root development. The Plant Journal, 50(3), 429–438.

    Article  CAS  PubMed  Google Scholar 

  • Santuari, L., Sanchez-Perez, G. F., Luijten, M., et al. (2016). The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis roots. The Plant Cell, 28(12), 2937–2951.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin, K. S., Murthy, H. N., Heo, J. K., Hahn, E. J., & Paek, K. Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum, 30, 339–343.

    Article  CAS  Google Scholar 

  • Sineshchekov, V., Belyaeva, O., & Sudnitsin, A. (2004). Up-regulation by phytochrome A of the active protochlorophyllide, Pchlide655, biosynthesis in dicots under far-red light. Journal of Photochemistry and Photobiology B: Biology, 74, 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Stawska, M., & Oracz, K. (2019). phyB and HY5 are involved in the blue light-mediated alleviation of dormancy of Arabidopsis seeds possibly via the modulation of expression of genes related to light, GA, and ABA. International Journal of Molecular Sciences, 20(23), 5882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens, B., & Rasmussen, A. (2016). The physiology of adventitious roots. Plant Physiology, 170, 603–617.

    Article  CAS  PubMed  Google Scholar 

  • Su, J., Liu, B., Liao, J., Yang, Z., Lin, C., & Oka, Y. (2017). Coordination of Cryptochrome and Phytochrome signals in the regulation of plant light responses. Agronomy, 7(1), 25.

    Article  Google Scholar 

  • Sudeep, H. P., Seetharamu, G. K., Aswath, C., Munikrishnappa, P. M., Sreenivas, K. N., Basavaraj, G., & Gowda, D. M. (2018). Comparative performance of Dendrobium orchid varieties on floral quality and flower yield under different growing conditions. International Journal of Pure & Applied Bioscience, 6(2), 114–121.

    Article  Google Scholar 

  • Suwanagul, A., Tanjitmantham, A., Hongtrakul, V. (2007). Cloning and characterization of ethylene receptor gene from Dendrobium Sonia ‘BOM 17’. in International Workshop on Ornamental Plants, vol. 788, pp. 87–96

  • Swarup, K., Benková, E., Swarup, R., Casimiro, I., Péret, B., Yang, Y., et al. (2008). The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 10(8), 946–954.

    Article  CAS  PubMed  Google Scholar 

  • Tian, J., Jiang, W., Si, J., Han, Z., Li, C., & Chen, D. (2022). Developmental characteristics and auxin response of epiphytic root in Dendrobium catenatum. Frontiers in Plant Science, 13, 935540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ugartechea-Chirino, Y., Swarup, R., Swarup, K., et al. (2010). The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Annals of Botany, 105(2), 277–289.

    Article  CAS  PubMed  Google Scholar 

  • Van Gelderen, K., Kang, C., Paalman, R., Keuskamp, D., Hayes, S., & Pierik, R. (2018). Far-red light detection in the shoot regulates lateral root development throught the HY5 transcription factor. The Plant Cell, 30(1), 101–116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahba, L. E., Nor Hazlina, M. S., Fadelah, A., Ratnam, W. (2014). Genetic relatedness among Dendrobium (Orchidaceae) species and hybrids using morphological and AFLP markers. HortScience, 49(5), 524–530.

  • Wang, G., Chen, Y., Fan, H., & Huang, P. (2020b). Effects of light-emitting diode (LED) red and blue light on the growth and photosynthetic characteristics of Momordica charantia L. Journal of Agricultural Chemistry and Environment, 10(01), 1.

    Article  CAS  Google Scholar 

  • Wang, X., Gao, X., Liu, Y., Fan, S., & Ma, Q. (2020). Progress of research on the regulatory pathway of the plant shade-avoidance syndrome. Frontiers in Plant Science, 11, 439. https://doi.org/10.3389/fpls.2020.00439

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. T. (1995). Phalaenopsis orchid light requirement during the induction of spiking. HortScience, 30(1), 59–61.

    Article  Google Scholar 

  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313.

    Article  CAS  Google Scholar 

  • Xie, Q., Frugis, G., Colgan, D., & Chua, N. H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes & Development, 14(23), 3024–3036.

    Article  CAS  Google Scholar 

  • Zha, X., Luo, J., Wang, J., Wei, Z., Jiang, S. (2009). Genetic characterization of the nine medicinal Dendrobium species using RAPD. African Journal of Biotechnology, 8(10), 2064–2068.

  • Zhang, G. Q., Liu, K. W., Li, Z., Lohaus, R., Hsiao, Y. Y., Niu, S. C., Wang, J. Y., Lin, Y. C., Xu, Q., Chen, L. J., & Yoshida, K. (2017). The Apostasia genome and the evolution of orchids. Nature, 549(7672), 379–383.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, G. Q., Xu, Q., Bian, C., et al. (2016). The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports, 6, 19029.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Hao, L., Hong, K., & Yi, Y. (2014). Growth, dendrobine content and photosynthetic characteristics of “Dendrobium nobile” under different solar irradiances. Plant Omics, 7(6), 461–467.

    Google Scholar 

  • Zhang, Y., Wang, C., Xu, H., Shi, X., Zhen, W., Hu, Z., Huang, J., Zheng, Y., Huang, P., Zhang, K. X., & Xiao, X. (2019). HY5 contributes to light-regulated root system architecture under a root-covered culture system. Frontiers in Plant Science, 10, 1490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhen, S., & Bugbee, B. (2020a). Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant, Cell and Environment, 43(5), 1259–1272.

    Article  CAS  PubMed  Google Scholar 

  • Zhen, S., & Bugbee, B. (2020b). Substituting far-red for traditionally defined photosynthetic photons results in equal canopy quantum yield for CO2 fixation and increased photon capture during long-term studies: Implications for re-defining PAR. Frontiers in Plant Science, 11, 581156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhen, S., van Iersel, M. W., & Bugbee, B. (2022). Photosynthesis in sun and shade: The surprising importance of far-red photons. New Phytologist, 236(2), 538–546.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Regional Plant Resource Center, Bhubaneswar for providing us Orchid Dendrobium Sonia plants to start the study.

Funding

This work was funded by core funding grant, National Institute of Science Education and Research (NISER), Department of Atomic Energy, Govt. of India and Department of Biotechnology (DBT), Ministry of Science and Technology, India (Grant No. BT/PBA/MF2014) to KCSP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madhusmita Panigrahy or Kishore C. S. Panigrahi.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, D.P., Pradhan, B., Jena, S.S. et al. Root growth in Orchid Dendrobium cv. Sonia requires shade avoidance response of phytochromes along with regulation of auxin pathway genes. Plant Physiol. Rep. (2024). https://doi.org/10.1007/s40502-024-00781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40502-024-00781-9

Keywords

Navigation