Skip to main content
Log in

Exploring the physiological basis of yield enhancement in New Generation Rice (NGR): a comparative assessment with non-NGR rice genotypes

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

As the research is progressing toward sustainable yield increment with minimal environmental impact, the breeding of New Generation Rice (NGR) has emerged as a promising strategy that is based on the ideotype concept. We performed a study to find out the influence of a few key morpho-physiological and yield-related traits on grain yield in NGR and non-NGR genotypes to see whether a few important physiological traits viz. flag leaf photosynthetic rate can be used as a selection criterion for enhanced grain yield in rice. For this, a panel of 211 genotypes including 47 NGR lines and 164 non-NGR lines was studied for their physiological and yield attributing traits such as flag leaf area, SPAD chlorophyll meter reading, total chlorophyll content, photosynthetic rate, stomatal conductance, transpiration rate, straw weight, total biomass, harvest index, pushing resistance, culm strength, and grain yield. Trait-specific analysis indicated a positive association of grain yield with straw weight, total biomass, harvest index, and pushing resistance for both groups. However, a significantly positive correlation and regression coefficient of grain yield with the photosynthetic rate was observed only in the case of the NGR lines, while the association was non-significant in non-NGR lines. Additionally, the photosynthetic rate was found to be significantly correlated with straw weight, total biomass, and pushing resistance in NGR lines. Thus, grain yield in NGR lines can be predicted by photosynthetic rate. This makes NGR lines an efficient candidate for breeding programmes with a target of breaking the yield ceiling, using photosynthetic rate as selection criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NGR:

New generation rice

FLA:

Flag leaf area

SCMR:

SPAD chlorophyll meter reading

TCC:

Total chlorophyll content

P N :

Photosynthetic rate

g s :

Transpiration rate

E :

Transpiration rate

SW:

Straw weight

TB:

Total biomass

HI:

Harvest index

PR:

Pushing resistance

CS:

Culm strength

GY:

Grain yield

References

  • Acevedo-Siaca, L. G., Coe, R., Quick, W. P., & Long, S. P. (2021). Evaluating natural variation, heritability, and genetic advance of photosynthetic traits in rice (Oryza sativa). Plant Breeding, 140, 745–757.

    CAS  Google Scholar 

  • Adachi, S., Yoshikawa, K., Yamanouchi, U., Tanabata, T., Sun, J., Ookawa, T., & Yonemaru, J. (2017). Fine mapping of carbon assimilation rate 8, a quantitative trait locus for flag leaf nitrogen content, stomatal conductance and photosynthesis in rice. Frontiers in Plant Science, 8, 60.

    PubMed  PubMed Central  Google Scholar 

  • Alvarez, R. D. C. F., Crusciol, C. A. C., Nascente, A. S., Rodrigues, J. D., & Habermann, G. (2012). Gas exchange rates, plant height, yield components, and productivity of upland rice as affected by plant regulators. Pesquisa Agropecuária Brasileira, 47, 1455–1461.

    Google Scholar 

  • Annonymous, 2020–21. https://pib.gov.in/PressReleseDetailm.aspx?PRID=1657839.

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Austin, R. B. (1990). Prospects for genetically increasing the photosynthetic capacity of crops. Plant Biology, 10, 395–409.

    Google Scholar 

  • Babul, V. R., Shreya, K., Dangi, K. S., Usharani, G., & Shankar, A. S. (2012). Correlation and path analysis studies in popular rice hybrids of India. International Journal of Scientific and Research Publications, 2(3), 2250–3153.

    Google Scholar 

  • Burton G.W. (1952). Quantitative inheritance in grasses. Proceedings of 6th International Grassland Congress, 1, 277–283.

  • Chen, Y., Yuan, L. P., Wang, X. H., Zhang, D. Y., Chen, J., Deng, Q. Y., & Xu, D. Q. (2007). Relationship between grain yield and leaf photosynthetic rate in super hybrid rice. Journal of Plant Physiology and Molecular Biology, 33(3), 235–243.

    PubMed  Google Scholar 

  • Croft, H., Chen, J. M., & Zhang, Y. (2014). The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecological Complexity, 17, 119–130.

    Google Scholar 

  • Dash, S. K., Meher, J., Behera, L., Anandan, A., Azharudheen, T. P. M., Barik, M., & Singh, O. N. (2015). Genetic diversity of new plant type rice selections in relation to indica, tropical japonicas, temperate japonicas and irrigated cultures. Oryza, 52(4), 266–274.

    Google Scholar 

  • Dash, S. K., Swain, P., Bose, L., Sah, R., Chakraboty, M., Umakanta, N., Chakraborty, K., Azharudheen, M. T. P., Lenka, S., Subudhi, H. N., Meher, J., Sarkar, S., Anandan, A., Kar, M., Munda, S., Pradhan, S. K., Behera, L., & Singh, O. N. (2018). New Generation Rice for breaking yield ceiling. In H. Pathak, A. K. Nayak, M. Jena, O. N. Singh, P. Samal, & S. G. Sharma (Eds.), Rice research for enhancing productivity, profitability and climate resilience (pp. 160–179). ICAR-NRRI.

    Google Scholar 

  • Fei, W., & Shao-bing, P. (2017). Yield potential and nitrogen use efficiency of China’s “super” rice. Journal of Integrative Agriculture, 16, 60345–60347.

    Google Scholar 

  • Giuliani, R., Koteyeva, N., Voznesenskaya, E., Evans, M. A., Cousins, A. B., & Edwards, G. E. (2013). Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (genus Oryza). Plant Physiology, 162(3), 1632–1651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopinath, P. P, Parsad, R, Joseph, B, Adarsh, V. S., (2020). GRAPES: General Rshiny Based Analysis Platform Empowered by Statistics. https://www.kaugrapes.com/home. version 1.0.0.

  • Hai, L., Guo, H., Xiao, S., Jiang, G., Zhang, X., Yan, C., et al. (2005). Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica, 141, 1–9. https://doi.org/10.1007/s10681-005-4713-2

    Article  CAS  Google Scholar 

  • Haritha, G., Vishnukiran, T., Rao, Y. V., Gowthami, C., Divya, B., Sarla, N., & Subrahmanyam, D. (2019). Characterization of Oryza nivara introgression lines: A potential prebreeding resource to improve net photosynthetic rate in elite cultivars of rice. Photosynthetica, 57(1), 47–60.

    CAS  Google Scholar 

  • Haritha, G., Vishnukiran, T., Yugandhar, P., Sarla, N., & Subrahmanyam, D. (2017). Introgressions from Oryza rufipogon increase photosynthetic efficiency of KMR3 rice lines. Rice Science, 24(2), 85–96.

    Google Scholar 

  • Huang, M., Tao, Z., Lei, T., Cao, F., Chen, J., Yin, X., & Liang, T. (2021). Improving lodging resistance while maintaining high grain yield by promoting pre-heading growth in rice. Field Crops Research, 270, 108212.

    Google Scholar 

  • Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybean. Agronomy Journal, 47, 274–318.

    Google Scholar 

  • Karthikeyan, P., Anbuselvam, Y., Elangaimannan, R., & Venkatesan, M. (2010). Variability and Heritability Studies in Rice (Oryza sativa L) Under Coastal Salinity. Electronic Journal of Plant Breeding, 1(2), 196–198.

    Google Scholar 

  • Kashiwagi, T., & Ishimaru, K. (2004). Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiology, 134, 676–683. https://doi.org/10.1104/pp.103.029355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsura, K., & Maeda, S. (2007). Analysis of yield attributes and crop physiological traits of Liangyoupe ijiu, A hybrid rice recently bred in china. Field Crop Research, 103, 170–177.

    Google Scholar 

  • Kumar, S., Chauhan, M. P., Tomar, A., Kasana, R. K., & Kumar, N. (2018). Correlation and path coefficient analysis in rice (Oryza sativa L). The Pharma Innovation Journal, 7(6), 20–26.

    Google Scholar 

  • Kumar, M. S., & Thavaprakaash, N. (2021). Relationship between physiological traits and yield of rice (Oryza sativa L.) under modified system of rice intensification. Journal of Applied and Natural Science, 13, 9–17.

    CAS  Google Scholar 

  • Li, Z., Wang, F., Lin, W., Zhao, Q., Liu, J., & Cheng, F. (2017). Carbon reserve and remobilization in leaf sheaths during the grain-filling stage in response to leaf early senescence. Acta Physiologiae Plantarum, 39, 10.

    CAS  Google Scholar 

  • Liu, Y., Zhu, X., He, X., Li, C., Chang, T., Chang, S., & Zhang, Y. (2020). Scheduling of nitrogen fertilizer topdressing during panicle differentiation to improve grain yield of rice with a long growth duration. Scientific Reports, 10(1), 15197.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathan, J., Singh, A., & Ranjan, A. (2021). Sucrose transport and metabolism control carbon partitioning between stem and grain in rice. Journal of Experimental Botany, 72(12), 4355–4372.

    CAS  PubMed  Google Scholar 

  • Mohanty, A., Chakraborty, K., Mondal, S., Jena, P., Panda, R. K., Samal, K. C., & Chattopadhyay, K. (2023). Relative contribution of ion exclusion and tissue tolerance traits govern the differential response of rice towards salt stress at seedling and reproductive stages. Environmental and Experimental Botany, 206, 105131.

    CAS  Google Scholar 

  • Nayak, S. K., Panda, R. K., & Das, S. R. (2020). Correlation and path analysis of physiological and genetic traits in stay green rice (Oryza sativa L.) genotypes. International Journal of Current Microbiology and Applied Sciences, 9(7), 2023–2029.

    CAS  Google Scholar 

  • Nikhil, B. S. K., Rangare, N. R., & Saidaiah, P. (2014). Correlation and path analysis in rice (Oryza sativa L.). International Journal of Tropical Agriculture, 32, 1–5.

    Google Scholar 

  • Pan, Y., Cao, Y., Chai, Y., Meng, X., Wang, M., Wang, G., & Guo, S. (2023). Identification of photosynthetic parameters for superior yield of two super hybrid rice varieties: A cross-scale study from leaf to canopy. Frontiers in Plant Science, 14, 1110257.

    PubMed  PubMed Central  Google Scholar 

  • Pan, Y., Du, H., Meng, X., & Guo, S. (2022). Variation in photosynthetic induction between super hybrid rice and inbred super rice. Plant Physiology and Biochemistry, 178, 105–115.

    CAS  PubMed  Google Scholar 

  • Rahman, M. A., Haque, M. E., Sikdar, B., Islam, M. A., & Matin, M. N. (2013). Correlation analysis of flag leaf with yield in several rice cultivars. Journal of Life and Earth Science, 8, 49–54.

    Google Scholar 

  • Rathva, S. R., Sharma, L. K., Balat, J. R., & Shekhawat, V. S. (2018). Studies genetic variability, heritability and genetic advance for various yield contributing traits in garlic (Allium sativum L). Journal of Pharmacognosy and Phytochemistry, 7(5), 1794–1797.

    CAS  Google Scholar 

  • Ray, D., Mueller, N., West, P., & Foley, J. (2015). Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8, e66428.

    Google Scholar 

  • Richards, R. A. (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 51(suppl_1), 447–458.

    CAS  PubMed  Google Scholar 

  • Sheoran, O. P., Tonk, D. S., Kaushik, L. S., Hasija, R. C., & Pannu, R. S. (1998). Statistical software package for agricultural research workers. Recent advances in information theory, statistics & computer applications by DS Hooda & RC Hasija Department of Mathematics Statistics, CCS HAU, Hisar, 139–143.

  • Sinclair, T. R., Purcell, L. C., & Sneller, C. H. (2004). Crop transformation and the challenge to increase yield potential. Trends in Plant Science, 9(2), 70–75.

    CAS  PubMed  Google Scholar 

  • Singh, A. L., Nakar, R. N., Chakraborty, K., & Kalariya, K. A. (2014). Physiological efficiencies in mini-core peanut germplasm accessions during summer season. Photosynthetica, 52, 627–635.

    CAS  Google Scholar 

  • Sohgaura, N., Mishra, D. K., Koutu, G. K., Singh, S. K., Kumar, V., & Singh, P. (2015). Evaluation of high yielding and better-quality rice varieties using principal component analysis. Ecology Environment and Conservation, 21, 187–195.

    Google Scholar 

  • Song, X. J., Huang, W., Shi, M., Zhu, M. Z., & Lin, H. X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING- type E3 Ubiquitin ligase. Nature Genetics, 39, 623–630.

    CAS  PubMed  Google Scholar 

  • Takai, T., Kondo, M., Yano, M., & Yamamoto, T. (2010). A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice, 3, 172–180.

    Google Scholar 

  • Tanaka, M., Keira, M., Yoon, D. K., Mae, T., Ishida, H., Makino, A., & Ishiyama, K. (2022). Photosynthetic enhancement, lifespan extension, and leaf area enlargement in flag leaves increased the yield of transgenic rice plants overproducing Rubisco under sufficient N fertilization. Rice, 15(1), 10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Wang, G., Li, X., Huang, J., & Zheng, J. (2008). Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L). Journal of Plant Physiology, 165(3), 324–330.

    CAS  PubMed  Google Scholar 

  • Wang, Q., Zhang, Q., Fan, D., & Lu, C. (2006). Photosynthetic light and CO2 utilization and C4 traits of two novel super-rice hybrids. Journal of Plant Physiology, 163(5), 529–537.

    CAS  PubMed  Google Scholar 

  • Wu, X., Tang, Y., Li, C., Wu, C., & Huang, G. (2015). Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Production Science, 18(3), 284–294.

    CAS  Google Scholar 

  • Yamori, W., Kondo, E., Sugiura, D., Terashima, I., Suzuki, Y., & Makino, A. (2016). Enhanced leaf photosynthesis as a target to increase grain yield: Insights from transgenic rice lines with variable rieske FeS protein content in the cytochrome b6/f complex. Plant, Cell & Environment, 39(1), 80–87.

    CAS  Google Scholar 

  • Yang, H., Mo, P., Chen, Y., Chen, R., Wei, T., Xie, W., Xiang, X., Huang, X., Zheng, T., & Fan, G. (2021). Genetic progress in grain yield radiation and nitrogen use efficiency of dryland winter wheat in Southwest China since 1965: Progress and prospect for improvements. Crop Science, 61, 1–18.

    Google Scholar 

  • Zeleke, B., & Worede, F. (2021). Correlation and path analysis for yield and related traits in upland rice (Oryza sativa L) varieties. Black Sea Journal of Agriculture, 4(1), 18–24.

    Google Scholar 

  • Zhang, J., Li, G., Huang, Q., Liu, Z., Ding, C., Tang, S., Chen, L., Wang, S., Ding, Y., & Zhang, W. (2017). Effects of culm carbohydrate partitioning on basal stem strength in a high-yielding rice population. The Crop Journal, 5(6), 478–487.

    Google Scholar 

  • Zhao, X. Q., Xu, J. L., Zhao, M., Lafitte, R., Zhu, L. H., Fu, B. Y., & Li, Z. K. (2008). QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L). Plant Science, 174(6), 618–625.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, ICAR-NRRI, Cuttack for providing the necessary facilities and funding for this work. We also thank Dr. R.P. Shah and Dr. R.L. Verma for their contribution to developing the panels of NGR and non-NGR genotypes.

Author information

Authors and Affiliations

Authors

Contributions

SKD and KC conceived the study and designed the experiment, BP carried out the experiments and recorded observations; BP and AM recorded agronomic traits; BP, JS, and SM did the photosynthetic measurement; BP, SKD, and KC analyzed the data and drafted the manuscript; all the authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Koushik Chakraborty or Sushanta K. Dash.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest for the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 364 KB)

Supplementary file2 (DOCX 89 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, B., Mondal, S., Mohanty, A. et al. Exploring the physiological basis of yield enhancement in New Generation Rice (NGR): a comparative assessment with non-NGR rice genotypes. Plant Physiol. Rep. 28, 543–555 (2023). https://doi.org/10.1007/s40502-023-00745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-023-00745-5

Keyword

Navigation