Skip to main content
Log in

Moisture stress induced anatomical, morpho-physiological and molecular changes in chickpea genotypes

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Drought stress is usually preceded by moisture stress conditions that triggers the plant to acclimate and adapt for the upcoming stress conditions. In the present study, two contrasting genotypes, ICC 4958 (drought-resistant) and CSJ 513 (drought-sensitive), were lysimetrically screened under normal and moisture-stressed conditions at the flower initiation stage. The study recorded various phenological, morpho-physiological and anatomical attributes to analyse any damage under reduced moisture conditions. The genotype ICC 4958 exhibited early flowering to avoid stress and expanded its root surface area by 2.7 times during the flower initiation stage under moisture stress conditions. However, both genotypes recorded cellular damage i.e. membrane permeability index (51.07%) and decreased leaf viability (34.70%) under mositure stress, with CSJ 513 being more affected than ICC 4958. Root analysis via SEM evidenced thickening of parenchyma and increased metaxylem vessels in the root of ICC 4958. Semi-quantitative PCR amplification studies found an expression of a specific gene, LEA6, in ICC 4958. A phylogenetic study using the homologous sequences reveals the distinctness of the two genes from the other family members. We detected five and two highly conserved regions in LEA3 and LEA6 genes respectively, through multiple sequence alignment, which might play a role in biotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berendzen, J., Brown, A.V., Cameron, C.T., Campbell, J.D., Cleary, A.M., Dash, S., Hokin, S., Huang, W., Kalberer, S.R., Nelson, R.T. & Redsun, S. (2021). The legume information system and associated online genomic resources. Legume Science, 3(3), e74.

    Article  Google Scholar 

  • Celik Altunoglu, Y., Baloglu, M. C., Baloglu, P., Yer, E. N., & Kara, S. (2017). Genome-wide identification and comparative expression analysis of LEA genes in watermelon and melon genomes. Physiology and Molecular Biology of Plants, 23, 5–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalal, M., Tayal, D., Chinnusamy, V., & Bansal, K. C. (2009). Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotech, 139, 137–145.

    Article  CAS  Google Scholar 

  • Daryanto, S., Wang, L., & Jacinthe, P. A. (2015). Global synthesis of drought effects on food legume production. PLoS ONE, 10, e0127401. https://doi.org/10.1371/journal.pone.0127401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devasirvatham, V., & Tan, D. K. Y. (2018). Impact of high temperature and drought stresses on Chickpea production. Agron, 8, 1–9.

    Google Scholar 

  • Felsenstein, J. (1989). Mathematics versus evolution: Mathematical evolutionary theory. Marcus W. Feldman. Ed. Princeton University Press, Princeton, NJ, 1989. x, 341 pp. 60;Paper, 19.95. Science, 246(4932), 941–942.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, R. A., & Drexlure, D. M. (1980). Interactions of dichloro-methyl and 2,4-D in cultivated oats (Avena sativa). Weed Science, 28, 363–366.

    Article  CAS  Google Scholar 

  • Furuki, T., Shimizu, T., Chakrabortee, S., Yamakawa, K., Hatanaka, R., Takahashi, T., Kikawada, T., Okuda, T., Mihara, H., Tunnacliffe, A., & Sakurai, M. (2012) Effects of Group 3 LEA model peptides on desiccation-induced protein aggregation. Biochimica et Biophysica Acta, 1824, 891–897. https://doi.org/10.1016/j.bbapap.2012.04.013.

    Article  CAS  PubMed  Google Scholar 

  • Guet, D., Burns, L. T., Maji, S., Boulanger, J., Hersen, P., Wente, S. R., Salamero, J., & Dargemont, C. (2015). Combining Spinach-tagged RNA and gene localization to image gene expression in live yeast. Nature communications, 6, 8882.

    Article  CAS  PubMed  Google Scholar 

  • Hand, S. C., Menze, M. A., Toner, M., Boswell, L., & Moore, D. (2011). LEA proteins during water stress: Not just for plants anymore. Annual Review of Physiology, 73, 115–134.

    Article  CAS  PubMed  Google Scholar 

  • He, S., Tan, L., Hu, Z., Chen, G., Wang, G., & Hu, T. (2012). Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Mol Genet Genom, 287, 39–54.

    Article  CAS  Google Scholar 

  • Hundertmark, M., Dimova, R., Lengefeld, J., Seckler, R., & Hincha, D. K. (2011). The intrinsically disordered late embryogenesis abundant protein LEA18 from Arabidopsis thaliana modulates membrane stability through binding and folding. Biochim Biophys Acta-Biomem, 1808, 446–453.

    Article  CAS  Google Scholar 

  • Jiménez, J. A., Alonso-Ramírez, A., & Nicolás, C. (2008). Two cDNA clones (FsDhn1 and FsClo1) up-regulated by ABA are involved in drought responses in Fagus sylvatica L. seeds. Journal of Plant Physiology, 165, 1798–1807.

    Article  PubMed  Google Scholar 

  • Johansen, D. A. (1940). Plant Microtechnique. McGraw-Hill, New York, 523.

  • Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Brit J Nutr, 108, 11–16.

    Article  Google Scholar 

  • Kashiwagi, J., Krishnamurthy, L., Purushothaman, R., Upadhyaya, H. D., Gaur, P. M., Gowda, C. L. L., Ito, O., & Varshney, R. K. (2015). Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crop Research, 170, 47–54.

    Article  Google Scholar 

  • Kashiwagi, J., Krishnamurthy, L., Upadhyaya, H. D., Krishna, H., Chandra, S., Vadez, V., & Serraj, R. (2005). Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica, 146, 213–222.

    Article  Google Scholar 

  • Kaur, D., Grewal, S., Kaur, J., Singh, S., & Singh, I. (2016). Water deficit stress tolerance in chickpea is mediated by the contribution of integrative defence systems in different tissues of the plant. Functional Plant Biology, 43, 903–918.

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard, J. A., Lilley, J. M., Howe, G. N., & Graham, J. M. (2007). Impact of sub soil water use on wheat yield. Australian Journal of Agricultural Research, 58, 303–315.

    Article  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Wang, Z., Wang, L. L., Wu, R. H., Phillips, J., & Deng, X. (2009). LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. Plant Science, 176, 90–98.

    Article  CAS  Google Scholar 

  • Lynch, C. J., & Adams, S. H. (2014). Branched-chain amino acids in metabolic signalling and insulin resistance. Nature Reviews Endocrinology, 10, 723–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magwanga, R. O., Lu, P., Kirungu, J. N., Dong, Q., Hu, Y., Zhou, Z., Cai, X., Wang, X., Hou, Y., Wang, K., & Liu, F. (2018). Cotton Late Embryogenesis abundant (LEA2) genes promote root growth and confer drought stress tolerance in transgenic Arabidopsis thaliana. Gene Genomes Genet, 8, 2781–2803.

    Article  CAS  Google Scholar 

  • Nuttonson, M. Y. (1957). Wheat climatic relationship and use of phenology in ascertaining the thermal and photothermal requirements of wheat. Soil Science, 83, 163.

    Article  Google Scholar 

  • Olvera-Carrillo, Y., Campos, F., Reyes, J. L., Garciarrubio, A., & Covarrubias, A. A. (2010). Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiology, 154, 373–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prince, S. J., Murphy, M., Mutava, R. N., Durnell, L. A., Valliyodan, B., Shannon, J. G., & Nguyen, H. T. (2017). Root xylem plasticity to improve water use and yield in water-stressed soybean. Journal of Experimental Botany, 68, 2027–2036.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purushothaman, R., Zaman-Allah, M., Mallikarjuna, N., Pannirselvam, R., Krishnamurthy, L., & Gowda, C. L. (2013). Root anatomical traits and their possible contribution to drought tolerance in grain legumes. Plant Prod Sci, 16(1), 1–8.

    Article  Google Scholar 

  • Sankar, B., Kathishwaran, K., & Somasundaram, R. (2013). Leaf anatomical changes in peanut plants in relation to drought stress with or without paclobutrazol and abscisic acid. J Phytol, 5, 25–29.

    CAS  Google Scholar 

  • Sass, J. E. (1940). Elements of botanical microtechnique. New York: McGraw-Hill.

    Google Scholar 

  • Singh, G., Narwal, S. S., Rao, V. U. M., & Dhaiya, D. S. (1990). Effects of sowing date on requirement of growing degree days, heliothermal units and photothermal units on phenology of winter maize (Zea mays). Indian Journal of Agricultural Sciences, 60, 723–731.

    Google Scholar 

  • Steponkus, P. L., & Lamphear, F. O. (1967). Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiology, 42, 1423–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. Journal of Experimental Botany, 63, 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Vadez, V., Rao, S., Kholova, J., Krishnamurthy, L., Kashiwagi, J., Ratnakumar, P., Sharma, K. K., Bhatnagar-Mathur, P., & Basu, P. S. (2008). Root research for drought tolerance in legumes: Quo vadis. J Food Legume, 21, 77–85.

    Google Scholar 

  • Wasson, A. P., Rebetzke, G. J., Kirkegaard, J. A., Christopher, J., Richards, R. A., & Watt, M. (2014). Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding. Journal of Experimental Botany, 65, 6231–6249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman-Allah, M., Jenkinson, D. M., & Vadez, V. (2011). A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. Journal of Experimental Botany, 62, 4239–4252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NJ was involved in the field and lysimetric screening experiments. She collected and analyzed the whole data through statistical analysis and was involved in basic framing and writing of research paper. JK mentored the student and was involved in the designing the whole Ph.D. research. The biotechnology part was performed under the guidance and of YV in the laboratories of school of agricultural biotechnology. IY was basically involved in dealing the bioinformatics part to design the phylogenetic tree with other legumes. The basic plant genetic material was procured from SS and IS plant breeders. Field experiments were conducted under the guidance of above-mentioned plant breeders.

Corresponding author

Correspondence to Norah Johal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26904 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johal, N., Kaur, J., Vikal, Y. et al. Moisture stress induced anatomical, morpho-physiological and molecular changes in chickpea genotypes. Plant Physiol. Rep. 28, 378–387 (2023). https://doi.org/10.1007/s40502-023-00740-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-023-00740-w

Keywords

Navigation