Skip to main content

Advertisement

Log in

Impact of high night temperature stress on different growth stages of wheat

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Increasing temperature especially the High night temperature (HNT) is a major constriction for sustaining global food production under changing climate scenario. Recent climate change has resulted into events of abrupt night temperature rise either throughout the crop period or at specific growth stage. Historical temperature observations and model projections have predicted a more pronounced increase in night temperature [minimum temperature (Tmin.)] compared to that of day temperatures [maximum temperature (Tmax.)]. Hence, the present study was carried out to identify the most critical growth stage affected by HNT and their effects on physiological, growth and yield traits of wheat. A unique field-based movable temperature controlling system was designed to enhance the night temperature by 5 °C than ambient temperature. The three critical phenological stages of wheat i.e. at GS 15 (before tillering initiation), GS 45 (booting) and GS 75 (grain filling) of Zadok’s scale were separately subjected to HNT treatment. The results reveals that GS 75 (grain filling) was the most sensitive stage affected by HNT, which has recorded remarkable reduction in grain yield (GY), Harvest Index (HI), Thousand grain weight (TGW) and grain weight per spike (GWPS) compared to control treatment. Pearson correlation analysis showed that breeders can choose lines with higher TGW, GWPS and grain number per spike (GNPS) for obtaining better GY under HNT conditions and vegetative/booting stage HNT in field condition may not attribute for any significant yield loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research. https://doi.org/10.1029/2005jd006290.

    Article  Google Scholar 

  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., et al. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147. https://doi.org/10.1038/nclimate2470.

    Article  Google Scholar 

  • Bahuguna, R. N., Solis, C. A., Shi, W., & Jagadish, K. S. V. (2017). Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryzasativa L.). Physiologia Plantarum, 159(1), 59–73. https://doi.org/10.1111/ppl.12485.

    Article  CAS  PubMed  Google Scholar 

  • Barrs, H., & Weatherley, P. (1962). A Re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3), 413. https://doi.org/10.1071/BI9620413.

    Article  Google Scholar 

  • Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323(5911), 240–244. https://doi.org/10.1126/science.1164363.

    Article  CAS  PubMed  Google Scholar 

  • Essemine, J., Ammar, S., & Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences, 10(6), 565–572.

    Article  CAS  Google Scholar 

  • Fischer, R. A., Byerlee, D., & Edmeades, G. (2014). Crop yields and global food security (pp. 8–11). ACIAR: Canberra, ACT.

    Google Scholar 

  • García, G. A., Serrago, R. A., Dreccer, M. F., & Miralles, D. J. (2016). Post-anthesis warm nights reduce grain weight in field-grown wheat and barley. Field Crops Research, 195, 50–59. https://doi.org/10.1016/j.fcr.2016.06.002.

    Article  Google Scholar 

  • Greaves, M. S., Bate, P. S., Roberts, W. T., & Shaw, S. W. K. (1996). Directional recrystallisation in nickel based high temperature alloy. Materials Science and Technology, 12(9), 730–734. https://doi.org/10.1179/mst.1996.12.9.730.

    Article  CAS  Google Scholar 

  • Hall, A. E. (2000). Crop responses to environment. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Hein, N. T., Wagner, D., Bheemanahalli, R., Šebela, D., Bustamante, C., Chiluwal, A., et al. (2019). Integrating field-based heat tents and cyber-physical system technology to phenotype high night-time temperature impact on winter wheat. Plant Methods. https://doi.org/10.1186/s13007-019-0424-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • ICAR-IIWBR (2020). Director’s Reports of AICRP on Wheat and Barley 2019-20, Ed:G. P. Singh. (pp. 76): ICAR—Indian Institute of Wheat and Barley Research, Karnal, Haryana, India.

  • Jagadish, S. V. K., Murty, M. V. R., & Quick, W. P. (2015). Rice responses to rising temperatures - challenges, perspectives and future directions: rice responses to rising temperatures. Plant, Cell and Environment, 38(9), 1686–1698. https://doi.org/10.1111/pce.12430.

    Article  CAS  PubMed  Google Scholar 

  • Jasp Team (2020). JASP (Version 0.12.1)[Computer software].

  • Laborte, A., Nelson, A., Jagadish, K., Aunario, J., Sparks, A., Ye, C., et al. (2012). Rice feels the heat. Rice Today, 11(3), 30–31.

    Google Scholar 

  • Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry. https://doi.org/10.3389/fchem.2018.00026.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamrutha, H. M., Singh, R., Sharma, D., Venkatesh, K., Pandey, G. C., & Kumar, R., et al. (2019). Physiological and Molecular Basis of Abiotic Stress Tolerance in Wheat. In V. R. Rajpal, D. Sehgal, A. Kumar, & S. N. Raina (Eds.), Genetic enhancement of crops for tolerance to abiotic stress: Mechanisms and approaches, Vol. I (Vol. 20, pp. 99–124). Cham: Springer International Publishing.

  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, T., Gregory, J. M., et al. (2007). Global climate projections. In IPCC, 2007: Climate Change 2007: the physical science basis. contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • Narayanan, S., Prasad, P. V. V., Fritz, A. K., Boyle, D. L., & Gill, B. S. (2015). Impact of high night-time and high daytime temperature stress on winter wheat. Journal of Agronomy and Crop Science, 201(3), 206–218. https://doi.org/10.1111/jac.12101.

    Article  CAS  Google Scholar 

  • Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., et al. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, 101(27), 9971–9975. https://doi.org/10.1073/pnas.0403720101.

    Article  CAS  Google Scholar 

  • Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2021–2035. https://doi.org/10.1098/rstb.2005.1752.

    Article  Google Scholar 

  • Prasad, P. V. V., & Djanaguiraman, M. (2014). Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Functional Plant Biology, 41(12), 1261. https://doi.org/10.1071/FP14061.

    Article  CAS  PubMed  Google Scholar 

  • Prasad, P. V. V., Pisipati, S. R., Ristic, Z., Bukovnik, U., & Fritz, A. K. (2008). Impact of nighttime temperature on physiology and growth of spring wheat. Crop Science, 48(6), 2372–2380. https://doi.org/10.2135/cropsci2007.12.0717.

    Article  Google Scholar 

  • Sharma, I. P., Kumar, N., & Bhatt, S. (2017). Heat stress in agriculture- the problem. Indian Farmers Digest, 50, 13–14.

    Google Scholar 

  • Sharma, D., Singh, R., Rane, J., Gupta, V. K., Mamrutha, H. M., & Tiwari, R. (2016). Mapping quantitative trait loci associated with grain filling duration and grain number under terminal heat stress in bread wheat (Triticumaestivum L.). Plant Breeding, 135(5), 538–545. https://doi.org/10.1111/pbr.12405.

    Article  CAS  Google Scholar 

  • Sharma, I., Tyagi, B., Singh, G., Venkatesh, K., & Gupta, O. (2015). Enhancing wheat production: A global perspective. Indian Journal of Agricultural Sciences, 85(1), 3–13.

    Google Scholar 

  • Shi, W., Muthurajan, R., Rahman, H., Selvam, J., Peng, S., Zou, Y., et al. (2013). Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytologist, 197(3), 825–837. https://doi.org/10.1111/nph.12088.

    Article  CAS  Google Scholar 

  • Shi, W., Yin, X., Struik, P. C., Xie, F., Schmidt, R. C., & Jagadish, K. S. V. (2016). Grain yield and quality responses of tropical hybrid rice to high night-time temperature. Field Crops Research, 190, 18–25. https://doi.org/10.1016/j.fcr.2015.10.006.

    Article  Google Scholar 

  • Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research: Atmospheres, 118(4), 1716–1733. https://doi.org/10.1002/jgrd.50203.

    Article  Google Scholar 

  • Stocker, T. F., & Wuebbles, D. (2013). Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change—Abstract for decision-makers; Changementsclimatiques 2013. Les elements scientifiques. Contribution du groupe de travail I au cinquieme rapport d’evaluation du grouped’expertsintergouvernemental sur l’evolution du CLIMAT—Resume a l’intention des decideurs.

  • Tabari, H., & Talaee, H. P. (2011). Analysis of trends in temperature data in arid and semi-arid regions of Iran. Global and Planetary Change, 79(1–2), 1–10. https://doi.org/10.1016/j.gloplacha.2011.07.008.

    Article  Google Scholar 

  • Tiwari, R., & Mamrutha, H. M. (2013). Precision phenotyping for mapping of traits for abiotic stress tolerance in crops. In R. K. Salar, S. K. Gahlawat, P. Siwach, & J. S. Duhan (Eds.), Biotechnology: Prospects and applications (pp. 79–85). New Delhi: Springer India.

    Chapter  Google Scholar 

  • Tubiello, F. N., Soussana, J.-F., & Howden, S. M. (2007). Crop and pasture response to climate change. Proceedings of the National Academy of Sciences, 104(50), 19686–19690.

    Article  CAS  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421.

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from the Indian Council of Agricultural Research under the project Grant No. DWR/RP/11-1.1.

Author information

Authors and Affiliations

Authors

Contributions

MHM conceived the idea, MHM, R and GK conducted the experiment. HK and YK assisted in data recording, VK analyzed the data. MHM, R, SK and MCN wrote the manuscript. GS and GPS edited and approved the final manuscript.

Corresponding author

Correspondence to H. M. Mamrutha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamrutha, H.M., Rinki, K., Venkatesh, K. et al. Impact of high night temperature stress on different growth stages of wheat. Plant Physiol. Rep. 25, 707–715 (2020). https://doi.org/10.1007/s40502-020-00558-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-020-00558-w

Keywords

Navigation