Skip to main content
Log in

RETRACTED ARTICLE: Screening and differential physiological responses of tomato (Solanum lycopersicum L.) to drought stress

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

This article was retracted on 13 June 2021

This article has been updated

Abstract

Water deficit stress remains an important agricultural threat worldwide, thereby identifying germplasm with proven tolerance to drought stress is imperative. Tomato (Solanum lycopersicum L.) is a prominent fruit vegetable whose growth is considerably hampered by drought stress. This study evaluated physiological responses of 14 commercial tomato cultivars subjected to drought stress. Multivariate analysis and drought susceptibility index were employed to assess differential drought tolerance among cultivars, resulting into selection of Star 9003 and Rodede as tolerant and sensitive cultivars respectively. Subsequent physiological experiments showed that cultivar Star 9003 maintained better photosynthetic parameters as opposed to Rodede under drought stress, but had lower intercellular carbon dioxide concentration indicating that available CO2 was efficiently assimilated as also shown by its higher carboxylation and instantaneous transpiration efficiencies (CE and ITE). Lower stomatal limitation values in sensitive cultivar Rodede hint at a possibility that the major photosynthetic limiting factors were non-stomatal such as oxidative stress-induced photoinhibitory damage. The present study reports that tolerance in Star 9003 was unrelated to avoidance in stomatal water losses, but in part through development of morphologically thicker leaves, accumulation of organic osmolytes for osmotic adjustment and attainment of higher efficiencies in photosynthetic water use and carbon assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Alarcon, J. J., Sanchez-Blanco, M. J., Bolarin, M. C., & Torrecillas, A. (1993). Water relations and osmotic adjustment in Lycopersicon esculentum and L. pennellii during short-term salt exposure and recovery. Physiologia Plantarum, 89, 441–447.

    CAS  Google Scholar 

  • Albaladejo, I., Meco, V., Plasencia, F., Flores, F. B., Bolarin, M. C., & Egea, I. (2017). Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: From leaf anatomical adaptations to molecular responses. Environmental and Experimental Botany, 135, 1–12.

    CAS  Google Scholar 

  • Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24, 23–58.

    CAS  Google Scholar 

  • Berry, J. A., & Downton, W. J. S. (1982). Environmental regulation of photosynthesis. Photosynthesis, 2, 263–343.

    CAS  Google Scholar 

  • Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56, 1159.

    Google Scholar 

  • Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell and Environment, 40, 4–10.

    CAS  PubMed  Google Scholar 

  • Chaves, M. M. (1991). Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42, 1–16.

    CAS  Google Scholar 

  • Cornic, G., & Fresneau, C. (2002). Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Annals of Botany, 89, 887–894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egea, I., Albaladejo, I., Meco, V., Morales, B., Sevilla, A., Bolarin, M. C., et al. (2018). The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration. Scientific Reports, 8, 1–14.

    CAS  Google Scholar 

  • Farooq, S., & Azam, F. (2006). The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. Journal of Plant Physiology, 163, 629–637.

    CAS  PubMed  Google Scholar 

  • Fischer, R., & Maurer, R. (1978). Drought resistance in spring wheat cultivars grain yield responses. Australian Journal of Agricultural Research, 29, 897.

    Google Scholar 

  • Flagella, Z., Campanile, R. G., Stoppelli, M. C., De Caro, A., & Di Fonzo, N. (1998). Drought tolerance of photosynthetic electron transport under CO2-enriched and normal air in cereal species. Physiologia Plantarum, 104, 753–759.

    CAS  Google Scholar 

  • Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J., & Medrano, H. (2008). Mesophyll conductance to CO2: Current knowledge and future prospects. Plant, Cell and Environment, 31, 602–621.

    CAS  PubMed  Google Scholar 

  • Galmés, J., Conesa, M. A., Ochogavía, J. M., Perdomo, J. A., Francis, D. M., Ribas-Carbó, M., et al. (2011). Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell and Environment, 34, 245–260.

    PubMed  Google Scholar 

  • Hall, A., & Schulze, E. (1980). Drought effects on transpiration and leaf water status of cowpea in controlled environments. Functional Plant Biology, 7, 141.

    Google Scholar 

  • He, J. X., Wang, J., & Liang, H. G. (1995). Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiologia Plantarum, 93, 771–777.

    CAS  Google Scholar 

  • Hill, C. B., Taylor, J. D., Edwards, J., Mather, D., Bacic, A., Langridge, P., et al. (2013). Whole-genome mapping of agronomic and metabolic traits to identify novel quantitative trait Loci in bread wheat grown in a water-limited environment. Plant Physiology, 162, 1266–1281.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ijaz, R., Ejaz, J., Gao, S., Liu, T., Imtiaz, M., Ye, Z., et al. (2017). Overexpression of annexin gene AnnSp2, enhances drought and salt tolerance through modulation of ABA synthesis and scavenging ROS in tomato. Scientific Reports, 7, 12087.

    PubMed  PubMed Central  Google Scholar 

  • Jangid, K. K., & Dwivedi, P. (2016). Physiological responses of drought stress in tomato : A review. International Journal of Agriculture, Environment and Biotechnology, 9, 53–58.

    Google Scholar 

  • Johl, S. S., United Nations. Economic Commission for Western Asia, Food and Agriculture Organization of the United Nations, Muʼassasat al-Baḥth al-ʻIlmī (Iraq). (2013). Irrigation and agricultural development: Based on an international expert consultation. Baghdad, Iraq, 24 February–1 March 1979.

  • Jungklang, J., Saengnil, K., & Uthaibutra, J. (2017). Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi Journal of Biological Sciences, 24, 1505–1512.

    CAS  PubMed  Google Scholar 

  • Kamanga, R. M., Mbega, E., & Ndakidemi, P. (2018). Drought tolerance mechanisms in plants: Physiological responses associated with water deficit stress in Solanum lycopersicum. Advances in Crop Science and Technology, 6, 1000362.

    Google Scholar 

  • Kamanga, R. M., & Mndala, L. (2019). Crop abiotic stresses and nutrition of harvested food crops: A review of impacts, interventions and their effectiveness. African Journal of Agricultural Research, 14, 118–135.

    CAS  Google Scholar 

  • Kramer, P. J., & Boyer, J. S. (1995). Water relations of plants and soils. New York: Elsevier Science, Academics Press.

    Google Scholar 

  • Langridge, P., & Reynolds, M. P. (2015). Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology, 32, 130–135.

    CAS  PubMed  Google Scholar 

  • Ludlow, M. M. (1987). Contribution of osmotic adjustment to the maintenance of photosynthesis during water stress. In Progress in Photosynthesis Research (pp. 161–168). Dordrecht: Springer, Netherlands.

  • McCready, R. M., Guggolz, J., Silviera, V., & Owens, H. S. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22, 1156–1158.

    CAS  Google Scholar 

  • Medrano, H., Escalona, J. M., Bota, J., Guli, Â., & Flex, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Annals of Botany, 89, 895–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadkhani, N., & Heidari, R. (2008). Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Applied Sciences Journal, 3, 448–453.

    Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    CAS  PubMed  Google Scholar 

  • Munns, R., & Weir, R. (1981). Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels. Functional Plant Biology, 8, 93.

    CAS  Google Scholar 

  • Niinemets, Ü., & Sack, L. (2006). Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. In U. Lüttge, F. M. Cánovas, H. Pretzsch, M.-C. Risueño, & C. Leuschner (Eds.), Progress in botany (pp. 385–419). Berlin: Springer.

    Google Scholar 

  • Ohashi, Y., Nakayama, N., Saneoka, H., & Fujita, K. (2006). Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, 50, 138–141.

    Google Scholar 

  • RStudio Team (2019). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/.

  • Robredo, A., Pérez-López, U., de la Maza, H. S., González-Moro, B., Lacuesta, M., Mena-Petite, A., et al. (2007). Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environmental and Experimental Botany, 59, 252–263.

    CAS  Google Scholar 

  • Saadi, S., Todorovic, M., Tanasijevic, L., Pereira, L. S., Pizzigalli, C., & Lionello, P. (2015). Climate change and mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agricultural Water Management, 147, 103–115.

    Google Scholar 

  • Sahoo, M. R., Dasgupta, M., Kole, P. C., & Mukherjee, A. (2018). Photosynthetic, physiological and biochemical events associated with polyethylene glycol-mediated osmotic stress tolerance in taro (Colocasia esculenta L. Schott). Photosynthetica, 56, 1069–1080.

    CAS  Google Scholar 

  • Sairam, R. K., Rao, K. V., & Srivastava, G. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037–1046.

    CAS  Google Scholar 

  • Saneoka, H., Hiratsuka, K., Premachandra, G. S., & Fujita, K. (1998). Effect of temperature on cell membrane stability and solute content of leaves of orchardgrass (Dactylis glomerata L.). Japanese Journal of Grassland Science, 43, 385–390.

    CAS  Google Scholar 

  • Schwarz, D., Thompson, A. J., & Kiãring, H. P. (2014). Guidelines to use tomato in experiments with a controlled environment. Frontiers in Plant Science, 5, 1–16.

    Google Scholar 

  • Seki, M., Umezawa, T., Urano, K., & Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10, 296–302.

    CAS  PubMed  Google Scholar 

  • Shamim, F., Saqlan, S. M., Athar, H. U. R., & Waheed, A. (2014). Screening and selection of tomato genotypes/cultivars for drought tolerance using multivariate analysis. Pakistan Journal of Botany, 46, 1165–1178.

    Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1–26.

    Google Scholar 

  • Slatyer, R. O., & Markus, D. K. (1968). Plant-water relationships. Soil Science, 106(6), 478.

  • Smith, M., & Steduto, P. (2012). The original FAO water. Yield Response To Water (pp. 1–10).

  • Soltys-Kalina, D., Plich, J., Strzelczyk-Żyta, D., Śliwka, J., & Marczewski, W. (2016). The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breeding Science, 66, 328–331.

    PubMed  PubMed Central  Google Scholar 

  • Steduto, P., Hsiao, T. C., Fereres, E., & Raes, D. (2012). Crop yield response to water. FAO Irrigation and Drainage Paper ISSN.

  • Tariq, A., Pan, K., Olatunji, O. A., Graciano, C., Li, Z., Sun, F., Zhang, A. (2018). Phosphorous fertilization alleviates drought effects on Alnus cremastogyneby regulating its antioxidant and osmotic potential. Scientific Reports, 8, 1–11.

  • Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., et al. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal, 29, 417–426.

    CAS  PubMed  Google Scholar 

  • Turner, N. C., & Jones, M. M. (1980). Turgor maintenance by osmotic adjustment: A review and evaluation. In N. C. Turner & P. J. Kramer (Eds.), Adaptation of plants to water and high temperature stress (pp. 87–103). New York: Wiley.

    Google Scholar 

  • Ueda, A., Kanechi, M., Uno, Y., & Inagaki, N. (2003). Photosynthetic limitations of a halophyte sea aster (Aster tripolium L.) under water stress and NaCl stress. Journal of Plant Research, 116, 65–70.

    CAS  PubMed  Google Scholar 

  • Wang, Y., & Frei, M. (2011). Stressed food—The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems & Environment, 141, 271–286.

    Google Scholar 

  • Yuan, X. K., Yang, Z. Q., Li, Y. X., Liu, Q., & Han, W. (2016). Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica, 54, 28–39.

    CAS  Google Scholar 

  • Zdravkovic, J., Jovanovic, Z., Djordjevic, M., Girek, Z., Zdravkovic, M., & Stikic, R. (2013). Application of stress susceptibility index for drought tolerance screening of tomato populations. Genetika, 45, 679–689.

    Google Scholar 

  • Zeng, L., Shannon, M. C., & Grieve, C. M. (2002). Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica, 127, 235–245.

    CAS  Google Scholar 

  • Zhu, M., Monroe, J. G., Suhail, Y., Villiers, F., Mullen, J., Pater, D., et al. (2016). Molecular and systems approaches towards drought-tolerant canola crops. New Phytologist, 210, 1169–1189.

    CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges support received from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) for funding their studies. The author also sincerely thanks Associate Professor Dr. Akihiro Ueda of the Laboratory of Plant Nutritional Physiology, Graduate School of Biosphere Science, Hiroshima University for his mentorship and invaluable addition to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rowland M. Kamanga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s40502-020-00532-6

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamanga, R.M. RETRACTED ARTICLE: Screening and differential physiological responses of tomato (Solanum lycopersicum L.) to drought stress. Plant Physiol. Rep. 25, 472–482 (2020). https://doi.org/10.1007/s40502-020-00532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-020-00532-6

Keywords

Navigation