Skip to main content
Log in

Callus induction and indirect regeneration of Thunbergia coccinea Wall.

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

In vitro regeneration of Thunbergia coccinea Wall. ex D. Don via organogenesis was obtained from leaf callus tissue of T. coccinea, a perennial climbing medicinal vine plant with attractive red scarlet blooming in particular season. Highest weighted callus was obtained from leaves of T. coccinea on Murashige and Skoog basal medium supplemented with 5.0 mg/L NAA. Embryogenic callus were observed on MS basal media containing NAA rather than 2,4-D. Somatic embryogenesis was demonstrated by field emission scanning electron microscopic studies of some embryogenic callus. Highest frequency of somatic embryos was obtained in 3.0 mg/L NAA. Indirect shoot bud organogenesis and rhizogenesis were also observed on some embryogenic callus. Plantlets were regenerated from both somatic embryos and shoot buds. Highest number of shoots was noted in 0.1 mg/L NAA and 2.0 mg/L BAP combination while transferring in regeneration media. Regenerated plantlets were hardened successfully on pot. The survival rate of regenerated plants after hardening was 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog

NAA:

α-Naphthalene acetic acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

BAP:

Benzyl amino purine

FESEM:

Field emission scanning electron microscope

References

  • Adhikari, B., Pendry, C. A., Watson, M. F., & Wood, J. R. I. (2013). An account of Thunbergia (Acanthaceae) in Nepal, with a description of the new species T. nepalensis. Kew Bulletin,68(4), 651–661. https://doi.org/10.1007/s12225-013-9481-x.

    Article  Google Scholar 

  • Aslam, J., Mujib, A., & Sharma, M. (2014). Somatic embryos in Catharanthus roseus: A scanning electron microscopic study. Notulae Scientia Biologicae,6, 167–172.

    Article  Google Scholar 

  • Bhatia, S., & Sharma, K. (2015). Technical glitches in micropropagation. Modern Applications of Plant Biotechnology in Pharmaceutical Sciences. https://doi.org/10.1016/b978-0-12-802221-4.00013-3.

    Article  Google Scholar 

  • Bobák, M., Šamaj, J., Blehová, A., Ovečka, M., Hlavačka, A., Illéš, P., et al. (2006). A histological and SEM study of early stages of direct somatic embryogenesis in leaves of sundew Drosera spathulata Labill. Acta Botanica Hungarica,48, 29–38. https://doi.org/10.1556/ABot.48.2006.1-2.3.

    Article  Google Scholar 

  • Borah, P. (2017). Various ethno medicinal plants used for the treatment of reproductive health problems by Morans of Tinsukia district, Assam. International Journal of New Technology and Research 38–40.

  • Chandra, I., & Bhanja, P. (2002). Study of organogenesis in vitro from callus tissue of Flacourtia jangomas (Lour.) Raeusch through scanning electron microscopy. Current Science,83, 476–479.

    Google Scholar 

  • Gonçalves, S., & Romano, A. (2018). Production of plant secondary metabolites by using biotechnological tools. Secondary Metabolites—Sources and Applications. https://doi.org/10.5772/intechopen.76414.

    Article  Google Scholar 

  • Greger, H. (2017). Phytocarbazoles: Alkaloids with great structural diversity and pronounced biological activities. Phytochemistry reviews,16, 1095–1153. https://doi.org/10.1007/s11101-017-9521-5.

    Article  CAS  Google Scholar 

  • Hung, F. J., Song, J. X., Liu, J. J., Zhao, A. H., & Jia, W. (2013). Chemical constituents in Thunbergia from Africa. Zhongguo Zhong Yao Za Zhi,38, 1183–1187.

    CAS  PubMed  Google Scholar 

  • Isah, T., Umar, S., Mujib, A., Sharma, M. P., et al. (2018). Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield. Plant Cell, Tissue and Organ Culture,132, 239–265. https://doi.org/10.1007/s11240-017-1332-2.

    Article  CAS  Google Scholar 

  • Jansen, P. C. M. (1983). Mendes O Plantamedicinais, Seu uso traditional em Mocambique. Gabinete de Estudos de Medicina Tradicional, Ministerio da Saude, Maputo, Mocambique,1, 216.

    Google Scholar 

  • Kabir, M. S. H., Ahmad, S., Mahamood, Md S, Masum, Md A A, Kamala, A. T. M. M., et al. (2015). Evaluation of total condensed tannin content and anthelmintic activities of organic extracts of four Bangladeshi plants on Tubifex tubifex worm using in vitro method. International Journal of Pharmacy,5, 903–910.

    Google Scholar 

  • Kanchanapoom, T., Kasai, R., & Yamasaki, K. (2002). Iridoid glucosides from Thunbergia laurifolia. Phytochemistry,60, 769–771.

    Article  CAS  Google Scholar 

  • Kar, A., Goswami, N., & Saharia, D. (2013). Distribution and traditional uses of Thunbergia Retzius (Acanthaceae) in Assam, India. EHSST Org,7, 325–332.

    Google Scholar 

  • Karamian, R., & Ghasemlou, F. (2014). Plant regeneration via organogenesis and somatic embryogenesis in Verbascum sinuatum L. Acta Biologica Cracoviensia s. Botanica,56, 97–103. https://doi.org/10.2478/abcsb-2014-0010.

    Article  CAS  Google Scholar 

  • Kumar, V., & Chandra, S. (2014). High frequency somatic embryogenesis and synthetic seed production of the endangered species Swertia chirayita. Biologia,69, 186–192. https://doi.org/10.2478/s11756-013-0305-0.

    Article  CAS  Google Scholar 

  • Mir, A. H., Upadhaya, K., & Choudhury, H. (2014). Diversity of endemic and threatened ethnomedicinal plant species in Meghalaya, North-East India. International Research Journal of Environmental Sciences,3, 64–78.

    Google Scholar 

  • Murashigue, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobaco tissue cultures. Physiologia Plantarum. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

    Article  Google Scholar 

  • Na, H., Ki, W. K., Kwack, Y., Sung, K. K., & Chun, C. (2007). Comparative anatomy of embryogenic and non-embryogenic callus from Pimpinella brachycarpa. Journal of Plant Biology,50, 344–350. https://doi.org/10.1007/BF03030665.

    Article  Google Scholar 

  • Oonsivilai, R., Cheng, C., Bomser, J., Ferruzzi, M. G., & Ningsanond, S. (2007). Phytochemical profiling and phase II enzyme-inducing properties of Thunbergia laurifolia Lindl. (RC) extracts. Journal of Ethnopharmacology,114, 300–306.

    Article  CAS  Google Scholar 

  • Puripunyavanich, V., & Khamvarn, V. (2015). Callus induction in young leaf of Thunbergia laurifolia Lindl. In Burapha University international conference (pp. 774–779).

  • Purnima, M., & Gupta, P. C. (1978). Colouring matters from the flowers of T. laurifolia. Journal of the Indian Chemical Society,55, 622–623.

    CAS  Google Scholar 

  • Shahsavari, E., Maheran, A. A., Siti, A., Akmar, N., & Hanafi, M. M. (2010). The effect of plant growth regulators on optimization of tissue culture system in Malaysian upland rice. African Journal of Biotechnology,9, 2089–2094. https://doi.org/10.4314/ajb.v9i14.

    Article  CAS  Google Scholar 

  • Stevenson, D. D., & Szczeklik, A. (2006). Clinical and pathologic perspectives on aspirin sensitivity and asthma. Journal of Allergy and Clinical Immunology,118, 773–786. https://doi.org/10.1016/j.jaci.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  • Sultana, K., Chatterjee, S., Roy, A., & Chandra, I. (2015). Ethnopharmacological and phytochemical review on Thunbergia Retz. (Montin.) species. Medicinal and Aromatic Plants,4(5), 1–6. https://doi.org/10.4172/2167-0412.1000217.

    Article  CAS  Google Scholar 

  • Taid, T. C., Rajkhowa, R. C., & Kalita, J. C. (2014). A study on the medicinal plants used by the local traditional healers of Dhemaji district, Assam, India for curing reproductive health related disorders. Advances in Applied Science Research,5, 296–301.

    Google Scholar 

  • Victoria, S. H. (2014). Antioxidant activities of the leaves of Thunbergia coccinea Wall. International Journal of Phytopharmacy,5, 441–444.

    Google Scholar 

  • Victoria, S. H., Das, S., Lalhlenmawia, H., Phucho, L., Shantabi, L., & Sciences, N. (2012). Study of analgesic, antipyretic and anti-inflammatory activities of the leaves of Thunbergia coccinea Wall. International Journal of Multidisciplinary Research,2, 83–88.

    Google Scholar 

  • Yue, W., Ming, Q.-L., Lin, B., et al. (2016). Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology,36, 215–232. https://doi.org/10.3109/07388551.2014.923986.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Department of Biotechnology, The University of Burdwan for laboratory and instrumental assistance and also would like to acknowledge DST PURSE, Government of India for special instrumental assistance. They are grateful to the University Grants Commission of India for financial assistance.

Funding

Maulana Azad National Fellowship Award no. MANF-2017-18-WES-82383 provided by University Grant Commission.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Indrani Chandra designed the experiments. Kaniz Wahida Sultana executed the experiments and analyzed the data statistically. They prepared the manuscript and Dr. Anindita Roy contributed to carry out this experimental research substantially.

Corresponding author

Correspondence to Indrani Chandra.

Ethics declarations

Conflict of interest

All authors approved the manuscript after reading it and declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, K.W., Chandra, I. & Roy, A. Callus induction and indirect regeneration of Thunbergia coccinea Wall.. Plant Physiol. Rep. 25, 58–64 (2020). https://doi.org/10.1007/s40502-020-00501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-020-00501-z

Keywords

Navigation