Skip to main content
Log in

Effect of drought stress on the expression of genes linked to antioxidant enzymatic activity in landraces of Zea mays L. and Pennisetum glaucum (L.) R. Br.

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Millets are usually considered more drought tolerant than other cereals. Pearl millet [Pennisetum glaucum (L.) R. Br.] could be an alternative to maize (Zea mays L.) for drought hit regions of the world. In this current study, the sensitivity of these two plants was evaluated under a simulated condition of drought stress. Genotypes IP35451 (pearl millet) and LRN1303 (maize) were compared for their tolerance to drought stress. The growth parameters viz., root/shoot ratio and relative water content were reduced drastically in LRN1303 than in IP35451. Photosystem II was also measured and the study revealed a decrease in electron transport rate and photosynthetically active photo flux density in LRN1303 as compared to IP35451 which had an efficient photosynthesis capacity during drought. Malondialdehyde content and concentration of antioxidant enzymes (Ascorbate peroxidase, Catalase, Glutathione reductase and Superoxide dismutase) revealed that the genotype IP35451 (pearl millet) is better adapted to drought as compared to LRN1303 (maize). Moreover, the gene expression study of three identified genes at transcript levels proved their occurrence as indicators for drought tolerance. GBSS11a in leaf and root displayed steady up-regulation under drought stress in IP35451 (pearl millet), and an initial increase with a subsequent down-regulation in LRN1303 (maize). Expression of antioxidant genes revealed that APX1 and CAT1 in leaves and roots were more remarkably sensitive to drought in IP35451 (pearl millet), however, not for LRN1303 (maize) where they might support better detoxifying action against reactive oxygen species effect under drought condition. The results showed different capacities of LRN1303 (maize) and IP35451 (pearl millet) to activate expression of drought related mRNA. The outcome of the study will be helpful to provide new avenues in future research related to attaining drought tolerant landraces and their genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi, H. (1984). Catalase in vitro. Methods Enzymology,105, 121–126.

    CAS  Google Scholar 

  • Alia, K. V., Prasad, S. K., & Pardha, S. P. (1995). Effect of zinc on free radical and proline in Brassica juncea and Cajanus cajan. Phytochemistry,39, 45–47.

    CAS  Google Scholar 

  • Barata, R. M., Chapparro, S. M., Chabregas, R., Gonzalez, C. A., Labate, R. A., Azevedo, G., et al. (2000). Targeting of the soybean leghemoglobin to tobacco chloroplasts: Effects on aerobic metabolism in transgenic plants. Plant Science,155, 193–202.

    CAS  PubMed  Google Scholar 

  • Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. CRC Critical Review in Plant Science,24, 23–58.

    CAS  Google Scholar 

  • Beauchamp, C. H., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochemistry,44, 276–287.

    CAS  Google Scholar 

  • Belder, P., Spiertz, J. H. J., Bouman, B. A. M., Lu, G., & Tuong, T. P. (2005). Nitrogen economy and water productivity of lowland rice under water saving irrigation. Field Crops Research,93, 169–185.

    Google Scholar 

  • Bota, H. M., Magdalena, T., Sebastià, M., Jaume, F., Esther, H., Joan, R., et al. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop Journal,3, 220–228.

    Google Scholar 

  • Bouman, B. A. M. (2007). A conceptual framework for the improvement of crop water productivity at different spatial scales. Agronomical System,93, 43–60.

    Google Scholar 

  • Bruce, W. B., Edmeades, G. O., & Barker, T. C. (2002). Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany,53(366), 13–25.

    CAS  PubMed  Google Scholar 

  • Cakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research,89, 1–6.

    Google Scholar 

  • Caverzan, A., Passaia, G., Rosa, S. B., Rebeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidise in antioxidant protection. Genetic Molecular Biology,35(4), 1011–1019.

    CAS  Google Scholar 

  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology,30, 239–264.

    CAS  PubMed  Google Scholar 

  • Davies, W. J., & Zhang, J. (1991). Root signals and the regulation of growth and development in plants in drying soils. Plant Molecular Biology,42, 55–70.

    CAS  Google Scholar 

  • Dietz, K. J. (2005). Plant thiol enzymes and thiolhomoestasis in relation to thiol dependent redox reaction and oxidative stress. In N. Smirnoff (Ed.), Antioxidant and reactive oxygen species in plants (pp. 25–52). Hoboken: Blackwell Publications.

    Google Scholar 

  • Feng, Q., Masayuki, K., & Yoh, S. (2014). Genome wide identification of housekeeping genes in maize. Plant Molecular Biology, 86, 543–554.

  • Fracasso, A., Trindade, L., & Amaducci, S. (2016). Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Journal of Plant Physiology,190, 1–14.

    CAS  PubMed  Google Scholar 

  • Genty, B., Briantails, J., & Baker, N. R. (1989). The relationship between the quenching yield of photosynthetic electron transport rate and quenching of chlorophyll fluorescence. Biochemistry Biophysics Acta,99, 87–92.

    Google Scholar 

  • Guo, J., Yang, Y., Wang, G., Yang, L., & Sun, X. (2010). Ecophysiological responses of Abies fabri seedlings to drought stress and nitrogen supply. Plant Physiology,139, 335–347.

    CAS  Google Scholar 

  • Harn, C., Knight, M., Ramakrishnan, A., Guan, H., Keeling, P. L., & Wasserman, B. P. (1998). Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm. Plant Molecular Biology,37, 639–649.

    CAS  PubMed  Google Scholar 

  • Hasan, S. A., Rabei, S. H., Nada, R. M., & Abogadallah, G. M. (2017). Water use efficiency in drought-stressed sorghum and maize in relation to expression of aquaporin genes. Biologia Plantarum,61(1), 127–137.

    CAS  Google Scholar 

  • Hayano-Kanashiro, C., Calderon, C., Ibarra-Laclette, E., Herrera-Estrella, L., & Simpson, J. (2009). Analysis of gene expression and physiological responses in three mexican maize landraces under drought stress and recovery irrigation. PLoS ONE,4(10), e7531. https://doi.org/10.1371/journal.pone.0007531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, Y., Xiao, P., & Guo, Wu. (2009). Comparison of the starch synthesis genes between maize and rice: Copies, chromosome location and expression divergence. Theoretical Applied Genetics,119, 815–825.

    Google Scholar 

  • ICAR-ICRP (All India Coordinated Research Project on Pearl Millet) (2014). Annual report 2013 2014. Retrieved [12th June 2014] from http://www.aicrpmip.res.in.

  • Knight, H., & Knight, M. R. (2011). Abiotic stress signaling pathways: Specificity and cross-talk. Trends in Plant Science,6, 262–267.

    Google Scholar 

  • Koch, K. E. (1996). Carbohydrate-modulated gene expression in plants. Plant Molecular Biology,47, 509–540.

    CAS  Google Scholar 

  • Lata, C., Gupta, S., & Prasad, M. (2013). Foxtail millet: A model crop for genetic and genomic studies inbioenergy grasses. Critical Review in Biotechnology,33, 328–343.

    Google Scholar 

  • Lata, C., Muthamilarasan, M., & Prasad, M. (2015). Drought stress responses and Signal transduction in plants. In G. K. Pandey (Ed.), Elucidation of abiotic stress signaling in plants (pp. 195–225). New York: Springer.

    Google Scholar 

  • Lawrence, C. J., Harper, L. C., Schaeffer, M. L., & Campbell, D. A. (2008). MaizeGDB: The maize model organism database for basic, translational and applied research. International Journal of Plant Genome,2008, 496957.

    Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−CT method. Methods,25, 402–408.

    CAS  PubMed  Google Scholar 

  • Mishra, R. N., Reddy, P. S., Nair, S., Markandeya, G., & Reddy, M. K. (2007). Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. Plant Molecular Biology,64, 713–732.

    CAS  PubMed  Google Scholar 

  • Mittal, S., Kumari, N., & Sharma, V. (2012). Differential response of salt stress on Brassica juncea; photosynthetic performance, protein, proline, D1 and antioxidant enzymes. Plant Physiology and Biochemistry,54, 17–26.

    CAS  PubMed  Google Scholar 

  • Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochemistry Biophysics Acta,176, 414–421.

    Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology,22, 867–880.

    CAS  Google Scholar 

  • Nepolean, T., Shiriga, K., Sharma, R., Kumar, K., & Hossain, F. (2014). Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene,2, 407–417.

    Google Scholar 

  • Odjegba, J., & Adeniyi, M. (2012). Responses of Celosia argentea L. to simulated drought and exogenous salicylic acid. Nature and Science,10(12), 2–6.

    Google Scholar 

  • Pandey, R. K., Maranville, J. W., & Admou, A. (2000). Deficit irrigation and nitrogen effects on maize in a sahelian environment Grain yield and yield components. Agricultural Water Management,46, 1–13.

    Google Scholar 

  • PoorMohammad Kiani, S., Grieu, P., Maury, P., Hewezi, T., Gentzbittel, L., & Sarrafia, A. (2007). Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L). Theoretical Applied Genetics,11(2), 193–207.

    Google Scholar 

  • Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology,161, 1189–1202.

    CAS  Google Scholar 

  • Reddy, P. S., Srinivas, D., Kiran, K., Bhatnagar-Mathur, P., & Vadez, V. (2015). Cloning and validation of reference genes for normalization of gene expression studies in pearl millet [Pennisetum glaucum (L.) R. Br.] by quantitative real-time PCR. Plant Gene,1, 35–42.

    CAS  Google Scholar 

  • Ribaut, J. M., & Ragot, M. (2007). Marker-assisted selection to improve drought adaptation in maize: The backcross approach, perspectives, limitations, and alternatives. Journal of Experimental Botany,58, 351–360.

    CAS  PubMed  Google Scholar 

  • Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science,86, 407–421.

    CAS  Google Scholar 

  • Schittenhelm, S., & Schroetter, S. (2014). Comparison of drought tolerance of maize, sweet sorghum and sorghum-sudan grass hybrids. Journal of Agricultural Crop Science,200, 46–53.

    CAS  Google Scholar 

  • Schreiber, U., Bilger, W., & Neubauer, C. (1995). Chlorophyll Fluorescence as a nonintrusive indicator for rapid assessment for in vitro photosynthesis. In E. D. Byschulze & M. M. Cadwell (Eds.), Ecophysiology of photosynthesis (pp. 49–70). Berlin: Springer.

    Google Scholar 

  • Sehgal, D., Rajaram, V., Armstead, I., Vadez, V., Hash, T., & Yadav, R. (2010). Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biology,12, 9–20.

    Google Scholar 

  • Sharma, I., Kumari, N., & Sharma, V. (2014). Defense gene expression in Sorghum bicolor against Macrophomina phaseolina in leaves and roots of susceptible and resistant cultivars. Journal of Plant Interaction, 9(1), 315–323.

  • Sharma, V., Parmar, P., & Kumari, N. (2016). Differential cadmium stress tolerance in wheat genotypes under mycorrhizal association. Journal of Plant Nutrition,52, 1–12.

    Google Scholar 

  • Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., & Bohnert, H. J. (2004). Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany,55(407), 2343–2351.

    CAS  PubMed  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology,6, 410–417.

    CAS  PubMed  Google Scholar 

  • Vadez, V., Aparna, K., Rajaram, V., & Trushar, M. (2008). Identification of Aquaporin genes from pearlmillet [Pennisetum glaucum (L.) R. Br.]. An Open Access Journal Icrisat,12, 3–12.

    Google Scholar 

  • Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology,16, 123–132.

    CAS  PubMed  Google Scholar 

  • Wang, Y. J., Wisniewski, M., Melian, R., Cui, M. G., Webb, R., & Fuchigami, L. (2005). Over expression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. Journal of America Horticultural Science,130, 167–173.

    CAS  Google Scholar 

  • Xue, P., McIntyre, C., Glassop, D., & Shorter, R. (2008). Use of expression analysis to dissect alterationsin carbohydrate metabolism in wheat leaves during drought stress. Plant Molecular Biology,67, 197–214.

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K., Kasuga, M., Liu, Q., Nakashima, K., Sakuma, Y., Abe, H., Shinwari, Z.K., Seki, M., & Shinozaki, K. (2003). Biological mechanisms of drought stress response. JIRCAS Working Report 1–8.

  • Yao, L. M., Wang, B., Cheng, L. J., & Wu, T. L. (2013). Identification of key drought stress-related genes in the hyacinth bean. PLoS ONE,8(3), e58108. https://doi.org/10.1371/journal.pone.0058108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, M., Ara, N., Nakkanong, K., Lv, W., Yang, J., & Hu, Z. (2007). Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species (“Cucurbita maxima” and “Cucurbita moschata”) and their interspecific inbred line “Maxchata”. International Journal of Molecular Science,14, 24008–24028. https://doi.org/10.3390/ijms141224008.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Aditya Shastri, Vice Chancellor, Banasthali (Rajasthan), India for his support. One of the authors (IE) also grateful to Centre of International Cooperation in Science in association with the Department of Biotechnology (DBT), India for providing the fund (Grant Number: 342) and Association of African Universities (AAU) (Ghana) for giving him opportunity to complete his Ph.D.

Author information

Authors and Affiliations

Authors

Contributions

EI, VO, CU and AA designed the research; EI, AA and VS conducted the research; EI, VO and AA analyzed the data; EI, VO, CU and AA drafted the paper; AA had responsibility for the concluded statement. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Afroz Alam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwuala, E., Odjegba, V., Ajiboye, A. et al. Effect of drought stress on the expression of genes linked to antioxidant enzymatic activity in landraces of Zea mays L. and Pennisetum glaucum (L.) R. Br.. Plant Physiol. Rep. 24, 422–433 (2019). https://doi.org/10.1007/s40502-019-00460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-019-00460-0

Keywords

Navigation