Skip to main content
Log in

Phytochemical analysis and assessment of in vitro antibacterial activity of non-polar solvent based Camelina seed extracts

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

A study was conducted to examine the phytochemical and antibacterial potential of non-polar solvent (hexane, petroleum ether, chloroform, and toluene) based Camelina sativa cv. Calena (EC643910) seed extracts for future investigation into the field of pharmacology, phytochemistry, ethnobotany and other biological actions for drug discovery. Among all tested extracts, hexane (disc 1) showed no inhibition zone against any pathogens, while petroleum ether based camelina seed extract (disc 2) showed sensitive activity with inhibition zones ranging from ~12 to 20 mm against most of the tested pathogens. Similarly, chloroform extract (disc 4) also showed significant activity with inhibition zones ranging from ~11 to 21 mm against all tested pathogens. Toluene extract showed no inhibition zone against Bacillus pumilus, Bacillus subtilis, Bacillus thurengenensis, Pseudomonas fluorescens, but showed significant inhibition zones ranging from ~13 to 18 mm, against Escherichia coli, Agrobacterium tumefaciens and Ralstonia solanacearum. The inhibition zones ranged from 9 to 29 mm for antibacterial activity against standard drug (disc 3 and 6). Chloroform extract showed highest phenolic (~3–4 µg g−1 dry wt), terpene (~2.6 µg of linalool g−1 dry wt), alkaloid (5 µg of atropine g−1 dry wt) and free amino acid (6.4 µg g−1 dry wt) accumulation, whereas petroleum ether extract showed highest (21.5 %) free radical scavenging property. Based on the phytochemical and antibacterial potential with different extracts, camelina was identified as the most suitable source for drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramovic, H., Butinar, B., & Nikolic, V. (2007). Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chemistry, 104, 903–909.

    Article  CAS  Google Scholar 

  • Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2, 875–877.

    Article  CAS  PubMed  Google Scholar 

  • Alabouvette, C., Olivain, C., & Steinberg, C. (2006). Biological control of plant diseases: the European situation. European Journal of Plant Pathology, 114, 329–341.

    Article  Google Scholar 

  • Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496.

    CAS  PubMed  Google Scholar 

  • Bebber, D. P., Ramotowski, M. A. T., & Gurr, S. J. (2013). Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3, 985–988.

    Article  Google Scholar 

  • Berhowa, M. A., Polat, U., Glinski, J. A., Glensk, M., Vaughn, S. F., Isbell, T., et al. (2013). Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Industrial Crops and Products, 43, 119–125.

    Article  Google Scholar 

  • Cal, A. D., Larena, I., Guijarro, B., & Melgarejo, P. (2012). Use of biofungicides for controlling plant diseases to improve food availability. Agriculture, 2, 109–124.

    Article  Google Scholar 

  • Conn, K. L., Browne, L. M., Tewari, J. P., & Ayer, W. A. (1994). Resistance to Rhizoctonia solani and presence of antimicrobial compounds in Camelina sativa roots. Journal of Plant Biochemistry and Biotechnology, 3, 125–130.

    Article  CAS  Google Scholar 

  • Czochra, M. P., & Widensk, A. J. (2002). Spectrophotometric determination of H2O2 activity. Analytica Chimica Acta, 452, 177–184.

    Article  Google Scholar 

  • Eidhin, D. N., Burke, J., & O’Beirne, D. (2003). Oxidative stability of omega3-rich camelina oil and Camelina oil-based spread compared with plant band fish oils and sunflower spread. Journal Food Science, 68, 345–353.

    Article  CAS  Google Scholar 

  • Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., et al. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Francis, A., & Warwick, S. I. (2009). The biology of Canadian weeds. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. ex DC.; C. sativa (L.) Crantz. Canadian Journal of Plant Science, 89, 791–810.

    Article  Google Scholar 

  • Ghorai, N., Chakraborty, S., Gucchait, S., Saha S. K., & Biswas, S. (2012). Estimation of total terpenoids concentration in plant tissues using a monoterpene, Linalool as standard reagent. http://www.nature.com/protocolexchange/protocols/2529#/authorinformation

  • Ghosh, A. (2006). Antifungal properties of haem peroxidase from Acorus calamus. Annals of Botany, 98, 1145–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Lugo, M. T., Singh, M. P., Maiese, W. M., & Timmermann, B. N. (2002). New antimicrobial cycloartane triterpenes from Acalypha communis. Journal of Natural Products, 65, 872–875.

    Article  CAS  PubMed  Google Scholar 

  • Ho, K. Y., Tsai, C. C., Huang, J. S., Chen, C. P., Lin, T. C., & Lin, C. C. (2001). Antimicrobial activity of tannin components from Vaccinium vitisidaea L. Journal of Pharmacy and Pharmacology, 53, 187–191.

    Article  CAS  PubMed  Google Scholar 

  • Hou, A. J., Liu, Y. Z., Yang, H., Lin, Z. W., & Sun, H. D. (2000). Hydrolyzable tannins and related polyphenols from Eucalyptus globulus. Journal of Asian Natural Products Research, 2, 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Katerere, D. R., Gray, A. I., Nash, R. J., & Waigh, R. D. (2003). Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry, 63, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defence and growth induction. Plant Cell Reports, 21, 829–837.

    CAS  PubMed  Google Scholar 

  • Kumar, K., Gupta, S. M., Arya, M. C., & Nasim, M. (2015a). In vitro antimicrobial and antioxidant activity of Camelina seed extracts: As potential source of bioactive compounds. In Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. doi:10.1007/s40011-015-0631-9

  • Kumar, K., Gupta, S. M., Arya, M. C., & Nasim, M. (2015b). Osmolyte and antioxidant adjustments in indoor plants in response to varying low temperature stress. Indian Journal of Plant Physiology, 20, 380–384.

    Article  Google Scholar 

  • Lee, W. H., & Safinar, I. I. (2012). Antioxidant activity of total phenolics and total flavonoids of Syzygium polyanthum (Wight) Walp leaves. International Journal of Medicinal and Aromatic Plants, 2, 219–228.

    Google Scholar 

  • Manohar, V., Ingram, C., & Gray, J. (2001). Antifungal activities of origanum oil against Candida albicans. Molecular and Cellular Biochemistry, 228, 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Moore, S., & Stein, W. H. (1948). Photometric ninhydrin method for use in the chromatography of amino acids. The Journal of Biological Chemistry, 176, 367–388.

    CAS  PubMed  Google Scholar 

  • Nayanakantha, N. M. C., Rawat, S., Ali, S., & Grover, A. (2014). Defense gene induction in Camelina sativa upon Alternaria brassicae challenge. Indian Phytopathology, 67, 252–256.

    Google Scholar 

  • Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  • Pearce, G., Strydom, D., Johnson, S., & Ryan, C. A. (1991). A polypeptide from tomato leaves induces wound inducible protienase inhibitor proteins. Science, 253, 895–898.

    Article  CAS  PubMed  Google Scholar 

  • Pedras, M. S., Yaya, E. E., & Glawischnig, E. (2011). The phytoalexins from cultivated and wild crucifers: Chemistry and biology. Natural Product Reports, 28, 1381–1405.

    Article  CAS  PubMed  Google Scholar 

  • Puupponen-Pimia, R., Nohynek, L., Meier, C., Kahkonen, M., Heinonen, M., Hopia, A., et al. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiol, 9, 494–507.

    Article  Google Scholar 

  • Randhir, R., Tong, L., & Shetty, K. (2004). Stimulation of phenolics, antioxidant and antimicrobial activity in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry, 39, 637–646.

    Article  CAS  Google Scholar 

  • Schanderi, S. H. (1970). Methods in food analysis. New York: Academic Press.

    Google Scholar 

  • Shamsa, F., Monsef, H., Ghamooshi, R., & Verdian-rizi, M. (2008). Spectrophotometric determination of total alkaloids in some Iranian medicinal plants. Thai Journal of Pharmaceutical Sciences, 32, 17–20.

    CAS  Google Scholar 

  • Soxhlet, F. (1879). Die genichtsanalytische bestimmung des miichfettes. Dingler’s Polytechnisches Journal, 232, 461.

    Google Scholar 

  • Srinivas, K. V., Rao, K. Y., Mahender, I., Das, B., Krishna, R. K. V., Kishore, H. K., et al. (2003). Flavanoids from Caesalpinia pulcherrima. Phytochemistry, 63, 789–793.

    Article  CAS  PubMed  Google Scholar 

  • Vukovic, N., Milosevic, T., Sukdolak, S., & Solujic, S. (2007). Antimicrobial activities of essential oil and methanol extract of Teucrium montanum. Evidence-Based Complementary and Alternative Medicine, 4, 17–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wanjala, C. C., Juma, B. F., Bojase, G., Gashe, B. A., & Majinda, R. R. (2002). Erythrinaline alkaloids and antimicrobial flavonoids from Erythrina latissima. Planta Medica, 68, 640–642.

    Article  CAS  PubMed  Google Scholar 

  • Wink, M. (1988). Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores. Theoretical and Applied Genetics, 75, 225–233.

    Article  CAS  Google Scholar 

  • Wittstock, U., & Gershenzon, J. (2002). Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology,. doi:10.1016/S1369-5266(02)00264-9.

    PubMed  Google Scholar 

Download references

Acknowledgments

The financial support from Defence Research and Development Organization (DRDO) is gratefully acknowledged. The authors wish to thank Director DIBER–DRDO for providing logistics and research facility for successful conduction of the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Pathak, R. Phytochemical analysis and assessment of in vitro antibacterial activity of non-polar solvent based Camelina seed extracts. Ind J Plant Physiol. 21, 255–262 (2016). https://doi.org/10.1007/s40502-016-0223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0223-6

Keywords

Navigation