Skip to main content
Log in

Effect of arsenic on δ-aminolevulinic acid formation in greening maize leaf segments

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Supply of 0.5 mM Na2AsO4 significantly decreased the δ-amino levulinic acid (ALA) content and total chlorophylls in greening maize leaf segments with the effect being more substantial for the later. Inclusion of precursors of chlorophyll also affected the ALA content. Thus, % decrease by arsenic (As) was significantly reduced in the presence of glutamine and MgCl2, but was increased by glycine and succinate. ALA formation and chlorophyll content were significantly decreased by 0.5 mM Na2AsO4 during levulinic acid treatment in light as well as dark with more severe effect in light. Difference in ALA accumulation in light and dark (L–D) was also substantially decreased by higher concentrations of As. Inclusion of succinate and MgCl2, respectively, increased and decreased the  % inhibition of ALA formation in light. In dark the addition of 2-oxoglutaric acid (2-OG), succinate and glycine caused an increase in % inhibition of ALA formation, while glutamate caused a decrease in inhibition. Inclusion of adenosine tri phosphate (ATP) increased the ALA formation in light in presence of As only, while pyridoxal phosphate (PLP) and MgCl2 enhanced it under both conditions. The results demonstrate more prominent decrease in total chlorophylls than ALA content and/or formation in the presence of As, indicating the involvement of other steps of chlorophyll biosynthesis in addition to ALA synthesis. Substantial decrease under dark at higher concentrations of As and protective effect of cofactors, such as, MgCl2, PLP and ATP in ALA formation in light suggests that chloroplastic ALA synthesizing activity is more sensitive to the presence of As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abedin, M. J., Feldman, J., & Meharg, A. A. (2002). Uptake kinetics of arsenic species in rice plants. Plant Physiology, 128, 1120–1128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avissar, Y. J., & Beale, S. I. (1989). Identification the enzymatic basis for δ-aminolevulinic acid auxotropy in a hem A mutant of E. coli. Journal of Bacteriology, 171, 2919–2924.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avissar, Y. J., Ormerod, J. G., & Beale, S. I. (1989). Distribution of δ-aminolevulinic acid biosynthetic pathways among phototropic bacterial groups. Archives of Microbiology, 151(6), 513–519.

    Article  CAS  PubMed  Google Scholar 

  • Beale, S. I. (1978). δ-aminolevulinic acid in plants: its biosynthesis, regulation and role in plastid development. Annual Review of Plant Physiology, 29, 95–120.

    Article  CAS  Google Scholar 

  • Beale, S. I., & Weinstein, J. D. (1989). Tetrapyrrole metabolism in photosynthetic organisms. In H. A. Daileyed (Ed.), Biosynthesis of Haeme and Chlorophylls (pp. 287–391). New York: McGraw-Hill.

    Google Scholar 

  • Castlefranco, P. A., & Beale, S. I. (1981). Chlorophyll biosynthesis. The Biochemistry of Plants, 8, 375–421.

    Google Scholar 

  • Duggan, J. F., Meller, E., & Gasmann, M. L. (1982). Catabolism of 5-aminolevulinic acid to CO2 by etiolated barley leaves. Plant Physiology, 69, 19–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Granick, S., & Beale, S. I. (1978). Hemes, chlorophylls and related compounds: Biosynthesis and metabolic regulation. In A. meister (Ed.), Advances in Enzymology (Vol. 46, pp. 33–203). New York: Wiley.

    Google Scholar 

  • Hameed, M., EL-Shora, Ahmed, M., & El-Gawad, Abd. (2014). Environmental toxicity of arsenic on Lupine Lupinustermisl.) as C3 crop plant and possible alleviation. International Journal of Agriculture and Crop Sciences, 10(7), 687–692.

    Google Scholar 

  • Harel, E., & Klein, S. (1972). Light dependent formation of delta aminolevulinic acid in etiolated leaves of higher plants. Biochemical Biophysical Research Communication, 49(2), 364–370.

    Article  CAS  Google Scholar 

  • Harrel, J. (1978). Chlorophyll biosynthesis and its control. In L. Reinhold, J. B. Harborne, & T. Swain (Eds.), Progress in Phytochemistry (Vol. 5, pp. 127–179). Oxford: Pergamon Press.

    Google Scholar 

  • Huang, L., & Castlefranco, P. A. (1990). Regulation of 5- aminolevulinic acid (ALA) synthesis in developing chloroplasts. Plant Physiology, 92, 172–178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jain, M., & Gadre, R. (1997). Effect of As on chlorophyll and protein contents and enzymic activities in greening maize tissues. Water, Air, and Soil pollution, 93, 109–115.

    CAS  Google Scholar 

  • Jain, M., & Gadre, R. (2004). Inhibition of 5-aminolevulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening. Journal of Plant Physiology, 161, 251–255.

    Article  CAS  PubMed  Google Scholar 

  • Kannangara, C. G., Gough, S., Bruyant, P., Hoober, J. K., Kahn, A., & Von Veltsten, D. (1989). tRNAGlu as a cofactor in δ-aminolevulinate biosynthesis : Steps that regulate chlorophyll synthesis. Trends in Biochemical Sciences, 13, 139–143.

    Article  Google Scholar 

  • Lee, J. S., Lee, S. W., Chon, H. T., & Kim, K. W. (2008). Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abondoned Myunbong Au-Ag mine site. Korean Journal of Geochemical Exploration., 90, 231–235.

    Article  Google Scholar 

  • Lichtanthaler, H., & Wellburn, A. (1983). Determination of total carotenoids and Chl. a and Chl. b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591–592.

    Article  Google Scholar 

  • Lissela, F. S., Long, K. R., & Scott, H. G. (1972). Health aspects of arsenicals in the environment. Journal of Environmental Health, 34, 511–518.

    Google Scholar 

  • Marin, A. R., Pezeshki, S. R., Masscheleyn, P. H., & Choi, H. S. (1993). Effect of dimethylarsinic acid (DMAA) on growth, tissue arsenic and photosynthesis of rice plants. Journal of Plant Nutrition, 16, 865–880.

    Article  CAS  Google Scholar 

  • May, B. K., Bhaskar, C. R., Bawden, M. J., & Cox, T. C. (1990). Molecular regulation of 5-aminolevulenate synthetase. Molecular Biology and Medicine, 7, 405–421.

    CAS  PubMed  Google Scholar 

  • Miteva, E., & Merakchiyska, M. (2002). Response of chloroplasts and photosynthetic mechanism of bean plants to excess arsenic in soil. Bulgarian Journal of Agricultural Science, 8, 151–156.

  • Naito, K., Ebato, T., Endo, Y., & Shimizu, S. D. (1980). Effect of benzyl adenine on δ-aminolevulinic acid synthetic ability and δ-aminolevulinic acid dehydratase: differential responses to benzyl adenine according to leaf age. Planzen Physiology, 96, 95–102.

    CAS  Google Scholar 

  • Nogaj, L. A., & Beale, S. I. (2005). Physical and kinetic interactions between glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotrasferase of Chlamydomonas reinhardtii. Journal of Biological Chemistry, 280, 24301–24307.

    Article  CAS  PubMed  Google Scholar 

  • Ormrod, D. P. (1978). Pollution in Horticulture. Amsterdam: Elsvier. Xi + 260 pp. illustrations.

    Google Scholar 

  • Prasad, D. D. K., & Prasad, A. R. K. (1987). Altered δ-ALA metabolism by lead and mercury in germinating seedlings of bajra (Penninsetum typhoideum). Journal of Plant Physiology, 127, 241–250.

    Article  CAS  Google Scholar 

  • Shaibur, M. R., & Kawai, Shigenao. (2011). Arsenic toxicity in akitakomachi rice in presence of Fe3+-EDTA. Bangladesh Journal of Agricultural Research, 36(4), 553–562.

    Google Scholar 

  • Tewari, A. K., & Tripathy, B. C. (1998). Temperature stress—induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiology, 117, 851–858.

    Article  CAS  Google Scholar 

  • Troxler, R. F., & Brown, A. S. (1975). Metabolism of δ-aminolevulinic acid in red and blue-green algae. Plant Physiology, 55, 463–467.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ujwal, M. L., McCormac, A. C., Goulding, A., Kumar, A. M., Soll, D., & Ferry, M. J. (2002). Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: expression of HEMA2 is regulated by sugars but is independent of light and plastid signaling. Plant Molecular Biology, 50, 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, L. M., & Kenney, D. R. (1975). Behaviour and phytotoxicity of inorganic arsenicals in soils. In E. A. Woolson (Ed.), Arsenical Pesticides (Vol. 7, pp. 35–52). Madison: ACS. Symp Ser.

    Chapter  Google Scholar 

  • Wickes, W. A., & Wishich, J. T. (1986). Arsenate uncoupling of oxidative phosphorylation in isolated plant mitochondria. Australian Journal of Plant Physiology, 3, 153–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meeta Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, M., Thapa, M., Pradhan, P. et al. Effect of arsenic on δ-aminolevulinic acid formation in greening maize leaf segments. Ind J Plant Physiol. 20, 191–196 (2015). https://doi.org/10.1007/s40502-015-0158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-015-0158-3

Keywords

Navigation