Skip to main content

Advertisement

Log in

Exploration of the Growing Therapeutic Potentials of Quercetin in Ovarian Cancer Management

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to offer a comprehensive insight and a recent update into the etiology and pathophysiology of ovarian cancer, a recent update on the usage of quercetin for ovarian cancer management.

Recent Findings

Over the last few decades, an alarming increase in global rates of ovarian cancer has been observed, resulting in increased pressure on the healthcare system. In order to effectively address the situation, there is a need to explore alternatives to currently dominant treatment regimes. The usage of phytoconstituents, such as polyphenols as anti-cancer agents, has emerged as a promising alternative. Quercetin, a widely distributed dietary flavonol, possesses potent antioxidant, anti-inflammatory, and cytoprotective properties, and has been used in the amelioration of a variety of metabolic disorders. In addition to effectively managing various types of cancer, it has been seen to pose lowered side effects and improve the overall quality of life of patients.

Summary

Literature search of quercetin showed remarkable properties like antioxidant, anti-cancer, anti-apoptotic, anti-inflammatory, and bioavailability-enhancing abilities that fit its appropriate use in pathological conditions. However, being a product of natural origin, bioavailability and optimal delivery may prove to be challenging to achieving the desired therapeutic efficacy. This review, in turn, furthers our understanding of the applications of quercetin in cancer management and the identification of challenges and future perspectives, to enable the maximization of therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adami HO, Hsieh CC, Lambe M, Trichopoulos D, Leon D, Persson I, Ekbom A, Janson PO. Parity, age at first childbirth, and risk of ovarian cancer. Lancet (London, England). 1994;344(8932):1250–4. https://doi.org/10.1016/s0140-6736(94)90749-8.

    Article  PubMed  CAS  Google Scholar 

  2. Asgharian P, Tazehkand AP, Soofiyani SR, Hosseini K, Martorell M, Tarhriz V, Ahangari H, et al. ‘Quercetin impact in pancreatic cancer: an overview on its therapeutic effects’. Edited by Felipe L. de Oliveira. Oxidative Med Cell Longev. 2021;2021(November):1–13. https://doi.org/10.1155/2021/4393266.

    Article  CAS  Google Scholar 

  3. Ashraf AH, Zuberi M, Afroze SH, Yamauchi K, Zawieja DC, Keuhl TJ, Erlandson LW, Uddin MN. Differential mechanism of action of 3,4′,7-O-trimethylquercetin in three types of ovarian cancer cells. Anticancer Res. 2018;38(9):5131–7. https://doi.org/10.21873/anticanres.12835.

    Article  PubMed  CAS  Google Scholar 

  4. Askari G, Ghiasvand R, Feizi A, Ghanadian SM, Karimian J. The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. J Res Med Sci. 2012;17(7):637–41.

    PubMed  PubMed Central  Google Scholar 

  5. Bonifácio VDB. Ovarian cancer biomarkers: moving forward in early detection. Adv Exp Med Biol. 2020;1219:355–63. https://doi.org/10.1007/978-3-030-34025-4_18.

    Article  PubMed  CAS  Google Scholar 

  6. Cao H-H, Cheng C-Y, Tao Su, Xiu-Qiong Fu, Guo H, Li T, Tse A-W, Kwan H-Y, Hua Yu, Zhi-Ling Yu. Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Mol Cancer. 2015;14(1):103. https://doi.org/10.1186/s12943-015-0367-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chan MM, Fong D, Soprano KJ, Holmes WF, Heverling H. Inhibition of growth and sensitization to cisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents. J Cell Physiol. 2003;194(1):63–70. https://doi.org/10.1002/jcp.10186.

    Article  PubMed  CAS  Google Scholar 

  8. Clendenen TV, Lundin E, Zeleniuch-Jacquotte A, Koenig KL, Berrino F, Lukanova A, Lokshin AE, et al. Circulating inflammation markers and risk of epithelial ovarian cancer. Cancer Epidemiol, Biomarkers Prev: Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2011;20(5):799–810. https://doi.org/10.1158/1055-9965.EPI-10-1180.

    Article  CAS  Google Scholar 

  9. Dabeek WM, Marra MV. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients. 2019;11(10):2288. https://doi.org/10.3390/nu11102288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. D’Andrea G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia. 2015;106(October):256–71. https://doi.org/10.1016/j.fitote.2015.09.018.

    Article  PubMed  CAS  Google Scholar 

  11. Dhanaraj T, Mohan M, Arunakaran J. Quercetin attenuates metastatic ability of human metastatic ovarian cancer cells via modulating multiple signaling molecules involved in cell survival, proliferation, migration and adhesion. Arch Biochem Biophys. 2021;701(April):108795. https://doi.org/10.1016/j.abb.2021.108795.

    Article  PubMed  CAS  Google Scholar 

  12. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049. https://doi.org/10.1155/2016/1245049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023. https://doi.org/10.1007/s10456-023-09876-7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Eisvand F, Tajbakhsh A, Seidel V, Zirak MR, Tabeshpour J, Shakeri A. Quercetin and its role in modulating endoplasmic reticulum stress: a review. Phytother Res. 2022;36(1):73–84. https://doi.org/10.1002/ptr.7283.

    Article  PubMed  CAS  Google Scholar 

  15. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5:28. https://doi.org/10.1038/s41392-020-0134-x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fatease AA, Shah V, Nguyen DX, Cote B, LeBlanc N, Rao DA, Alani AWG. Chemosensitization and mitigation of adriamycin-induced cardiotoxicity using combinational polymeric micelles for co-delivery of quercetin/resveratrol and resveratrol/curcumin in ovarian cancer. Nanomedicine: Nanotechnol, Biol Med. 2019;19(July):39–48. https://doi.org/10.1016/j.nano.2019.03.011.

    Article  CAS  Google Scholar 

  17. Fernandes SG, Gala K, Khattar E. Telomerase inhibitor MST-312 and quercetin synergistically inhibit cancer cell proliferation by promoting DNA damage. Transl Oncol. 2023;27(January):101569. https://doi.org/10.1016/j.tranon.2022.101569.

    Article  PubMed  CAS  Google Scholar 

  18. Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, Baker J, Kerr DJ. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res: Off J Am Assoc Cancer Res. 1996;2(4):659–68.

    CAS  Google Scholar 

  19. Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, Zheng Y, et al. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale. 2012;4(22):7021. https://doi.org/10.1039/c2nr32181e.

    Article  PubMed  CAS  Google Scholar 

  20. Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer. 2007;121(10):2225–32. https://doi.org/10.1002/ijc.22790.

    Article  PubMed  CAS  Google Scholar 

  21. Gong C, Yang Z, Zhang L, Wang Y, Gong W, Liu Yi. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via P53-dependent endoplasmic reticulum stress pathway. Onco Targets Ther. 2017;11(December):17–27. https://doi.org/10.2147/OTT.S147316.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hasan AASh, Kalinina EV, Tatarskiy VV, Volodina YuL, Petrova AS, Novichkova MD, Zhdanov DD, Shtil AA. Suppression of the antioxidant system and PI3K/Akt/MTOR signaling pathway in cisplatin-resistant cancer cells by quercetin. Bull Exp Biol Med. 2022;173(6):760–4. https://doi.org/10.1007/s10517-022-05626-9.

    Article  PubMed  CAS  Google Scholar 

  23. Hasan AA, Tatarskiy V, Kalinina E. Synthetic pathways and the therapeutic potential of quercetin and curcumin. Int J Mol Sci. 2022;23(22):14413. https://doi.org/10.3390/ijms232214413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hosseini A, Razavi BM, Banach M, Hosseinzadeh H. Quercetin and metabolic syndrome: a review. Phytother Res. 2021;35(10):5352–64. https://doi.org/10.1002/ptr.7144.

    Article  PubMed  CAS  Google Scholar 

  25. Hunn J, Rodriguez GC. Ovarian cancer: etiology, risk factors, and epidemiology. Clin Obstet Gynecol. 2012;55(1):3–23. https://doi.org/10.1097/GRF.0b013e31824b4611.

    Article  PubMed  Google Scholar 

  26. Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, Shamseddine A. Resistance mechanisms to anti-angiogenic therapies in cancer. Front Oncol. 2020;10. https://doi.org/10.3389/fonc.2020.00221.

  27. Huang X, He D, Pan Z, Luo G, Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater Today Bio. 2021;11:100124. https://doi.org/10.1016/j.mtbio.2021.100124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kashyap D, Mittal S, Sak K, Singhal P, Tuli HS. Molecular mechanisms of action of quercetin in cancer: recent advances. Tumor Biology. 2016;37(10):12927–39. https://doi.org/10.1007/s13277-016-5184-x.

    Article  PubMed  CAS  Google Scholar 

  29. Li Li, Mangali S, Kour N, Dasari D, Ghatage T, Sharma V, Dhar A, Bhat A. Syzygium cumini (jamun) fruit-extracted phytochemicals exert anti-proliferative effect on ovarian cancer cells. J Cancer Res Ther. 2021;17(6):1547–51. https://doi.org/10.4103/jcrt.JCRT_210_20.

    Article  PubMed  CAS  Google Scholar 

  30. Li M, Zhang W, Yang L, Wang H, Wang Y, Huang K, Zhang W. The mechanism of Xiaoyao San in the treatment of ovarian cancer by network pharmacology and the effect of stigmasterol on the PI3K/Akt pathway. Edited by Zhongjie Shi. Dis Markers. 2021;2021(June):1–10. https://doi.org/10.1155/2021/4304507.

    Article  CAS  Google Scholar 

  31. Li W, Shen F, Weber G. Ribavirin and quercetin synergistically downregulate signal transduction and are cytotoxic in human ovarian carcinoma cells. Oncol Res. 1999;11(5):243–7.

    PubMed  Google Scholar 

  32. Li W, Yu Y, Cheng H, Liu S, Gong T, Ma J, Tang Q. ‘Quercetin inhibits KBM7R cell proliferation through Wnt/β-catenin signaling’. Edited by Muhammad Zia-Ul-Haq. Evid-Based Complement Altern Med. 2022;2022(June):1–7. https://doi.org/10.1155/2022/1378976.

    Article  Google Scholar 

  33. Li Y, Kong D, Ying Fu, Sussman MR, Hong Wu. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 2020;148(March):80–9. https://doi.org/10.1016/j.plaphy.2020.01.006.

    Article  PubMed  CAS  Google Scholar 

  34. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y. Quercetin, inflammation and immunity. Nutrients. 2016;8(3):1–14. https://doi.org/10.3390/nu8030167.

    Article  CAS  Google Scholar 

  35. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70. https://doi.org/10.1007/s00018-019-03351-7.

    Article  PubMed  CAS  Google Scholar 

  36. Lupo G, Cambria MT, Olivieri M, Rocco C, Caporarello N, Longo A, Zanghì G, Salmeri M, Foti MC, Anfuso CD. Anti-angiogenic effect of quercetin and its 8-methyl pentamethyl ether derivative in human microvascular endothelial cells. J Cell Mol Med. 2019;23(10):6565–77. https://doi.org/10.1111/jcmm.14455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lupo G, Cambria MT, Olivieri M, Rocco C, Caporarello N, Longo A, Zanghì G, Salmeri M, Foti MC, Anfuso CD. Anti-angiogenic effect of quercetin and its 8-methyl pentamethyl ether derivative in human microvascular endothelial cells. J Cell Mol Med. 2019;23:6565–77. https://doi.org/10.1111/jcmm.14455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Macciò A, Madeddu C. Inflammation and ovarian cancer. Cytokine. 2012;58(2):133–47. https://doi.org/10.1016/j.cyto.2012.01.015.

    Article  PubMed  CAS  Google Scholar 

  39. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 2016;2(August):16061. https://doi.org/10.1038/nrdp.2016.61.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Metodiewa D, Jaiswal AK, Cenas N, Dickancaité E, Segura-Aguilar J. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radical Biol Med. 1999;26(1–2):107–16. https://doi.org/10.1016/S0891-5849(98)00167-1.

    Article  CAS  Google Scholar 

  41. Michalcova K, Roychoudhury S, Halenar M, Tvrda E, Kovacikova E, Vasicek J, Chrenek P, et al. In vitro response of human ovarian cancer cells to dietary bioflavonoid isoquercitrin. J Environ Sci Health B. 2019;54(9):752–7. https://doi.org/10.1080/03601234.2019.1633214.

    Article  PubMed  CAS  Google Scholar 

  42. Mirossay L, Varinská L, Mojžiš J. Antiangiogenic effect of flavonoids and chalcones: an update. Int J Mol Sci. 2017;19(1):E27. https://doi.org/10.3390/ijms19010027.

    Article  CAS  Google Scholar 

  43. Moazzami B, Chaichian S, Nikfar B, Bidgoli SA. Modulation of MicroRNAs expression and cellular signaling pathways through curcumin as a potential therapeutical approach against ovarian cancer: a review. Pathol – Res Pract. 2023;247(July):154527. https://doi.org/10.1016/j.prp.2023.154527.

    Article  PubMed  CAS  Google Scholar 

  44. Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. 2008;269(2):315–25. https://doi.org/10.1016/j.canlet.2008.03.046.

    Article  PubMed  CAS  Google Scholar 

  45. Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, et al. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnol Adv. 2020;38(January):107316. https://doi.org/10.1016/j.biotechadv.2018.11.005.

    Article  PubMed  CAS  Google Scholar 

  46. Ness RB, Cottreau C. Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst. 1999;91(17):1459–67. https://doi.org/10.1093/jnci/91.17.1459.

    Article  PubMed  CAS  Google Scholar 

  47. Nessa MU, Beale P, Chan C, Yu JQ, Huq F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res. 2011;31(11):3789–97.

    PubMed  CAS  Google Scholar 

  48. Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. ‘Anticancer efficacy of polyphenols and their combinations.’ Nutrients. 2016;8(9). https://doi.org/10.3390/nu8090552.

  49. Pani S, Mohapatra S, Sahoo A, Baral B, Debata PR. ‘Shifting of cell cycle arrest from the S‐phase to G2/M phase and downregulation of EGFR expression by phytochemical combinations in HeLa cervical cancer cells’. J Biochem Mol Toxicol 2022;36 (1). https://doi.org/10.1002/jbt.22947.

  50. Penny SM. Ovarian cancer: an overview. Radiol Technol. 2020;91(6):561–75.

    PubMed  Google Scholar 

  51. Pinheiro RGR, Pinheiro M, Neves AR. Nanotechnology innovations to enhance the therapeutic efficacy of quercetin. Nanomaterials. 2021;11(10):2658. https://doi.org/10.3390/nano11102658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52:192–203. https://doi.org/10.1038/s12276-020-0384-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pratheeshkumar P, Budhraja A, Son Y-O, Wang X, Zhang Z, Ding S, Wang L, Hitron A, Lee J-C, Xu M, Chen G, Luo J, Shi X. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One. 2012;7:e47516. https://doi.org/10.1371/journal.pone.0047516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Rais J, Jafri A, Siddiqui S, Tripathi M, Arshad M. Phytochemicals in the treatment of ovarian cancer. Front Biosci (Elite Ed). 2017;9(1):67–75. https://doi.org/10.2741/e786.

    Article  PubMed  Google Scholar 

  55. Ramalingam V, Sathya PM, Srivalli T, Mohan H. Synthesis of quercetin functionalized wurtzite type zinc oxide nanoparticles and their potential to regulate intrinsic apoptosis signaling pathway in human metastatic ovarian cancer. Life Sci. 2022;309(November):121022. https://doi.org/10.1016/j.lfs.2022.121022.

    Article  PubMed  CAS  Google Scholar 

  56. Rashidi Z, Khosravizadeh Z, Talebi A, Khodamoradi K, Ebrahimi R, Amidi F. Overview of biological effects of quercetin on ovary. Phytother Res. 2021;35(1):33–49. https://doi.org/10.1002/ptr.6750.

    Article  PubMed  Google Scholar 

  57. Rather RA, Bhagat M. Quercetin as an innovative therapeutic tool for cancer chemoprevention: molecular mechanisms and implications in human health. Cancer Med. 2020;9(24):9181–92. https://doi.org/10.1002/cam4.1411.

    Article  PubMed  CAS  Google Scholar 

  58. Ren MX, Deng XH, Ai F, Yuan GY, Song HY. Effect of quercetin on the proliferation of the human ovarian cancer cell line SKOV-3 in vitro. Exp Ther Med. 2015;10(2):579–83. https://doi.org/10.3892/etm.2015.2536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sakao K, Fujii M, Hou D-X. Clarification of the role of quercetin hydroxyl groups in superoxide generation and cell apoptosis by chemical modification. Biosci Biotechnol Biochem. 2009;73(9):2048–53. https://doi.org/10.1271/bbb.90253.

    Article  PubMed  CAS  Google Scholar 

  60. Samare-Najaf M, Zal F, Safari S. Primary and secondary markers of doxorubicin-induced female infertility and the alleviative properties of quercetin and vitamin E in a rat model. Reprod Toxicol. 2020;96(September):316–26. https://doi.org/10.1016/j.reprotox.2020.07.015.

    Article  PubMed  CAS  Google Scholar 

  61. Scambia G, Ranelletti FO, Benedetti Panici P, Bonanno G, De Vincenzo R, Piantelli M, Mancuso S. Synergistic antiproliferative activity of quercetin and cisplatin on ovarian cancer cell growth. Anticancer Drugs. 1990;1(1):45–8. https://doi.org/10.1097/00001813-199010000-00008.

    Article  PubMed  CAS  Google Scholar 

  62. Schildkraut JM, Bastos E, Berchuck A. Relationship between lifetime ovulatory cycles and overexpression of mutant P53 in epithelial ovarian cancer. J Natl Cancer Inst. 1997;89(13):932–8. https://doi.org/10.1093/jnci/89.13.932.

    Article  PubMed  CAS  Google Scholar 

  63. Shafabakhsh R, Asemi Z. Quercetin: a natural compound for ovarian cancer treatment. J Ovarian Res. 2019;12(1):1–9. https://doi.org/10.1186/s13048-019-0530-4.

    Article  Google Scholar 

  64. Shen F, Herenyiova M, Weber G. Synergistic down-regulation of signal transduction and cytotoxicity by tiazofurin and quercetin in human ovarian carcinoma cells. Life Sci. 1999;64(21):1869–76. https://doi.org/10.1016/s0024-3205(99)00133-2.

    Article  PubMed  CAS  Google Scholar 

  65. Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. Physiological signaling functions of reactive oxygen species in stem cells: from flies to man. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/fcell.2021.714370.

  66. Shen F, Weber G. Synergistic action of quercetin and genistein in human ovarian carcinoma cells. Oncol Res. 1997;9(11–12):597–602.

    PubMed  CAS  Google Scholar 

  67. Singh P, Arif Y, Bajguz A, Hayat S. The role of quercetin in plants. Plant Physiol Biochem. 2021;166(September):10–9. https://doi.org/10.1016/j.plaphy.2021.05.023.

    Article  PubMed  CAS  Google Scholar 

  68. Teekaraman D, Elayapillai SP, Viswanathan MP, Jagadeesan A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem Biol Interact. 2019;300(January):91–100. https://doi.org/10.1016/j.cbi.2019.01.008.

    Article  PubMed  CAS  Google Scholar 

  69. Tiwari H, Karki N, Pal M, Basak S, Verma RK, Bal R, Kandpal ND, Bisht G, Sahoo NG. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: the synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf B, Biointerfaces. 2019;178(June):452–9. https://doi.org/10.1016/j.colsurfb.2019.03.037.

    Article  PubMed  CAS  Google Scholar 

  70. Uttarawichien T, Kamnerdnond C, Inwisai T, Suwannalert P, Sibmooh N, Payuhakrit W. Quercetin inhibits colorectal cancer cells induced-angiogenesis in both colorectal cancer cell and endothelial cell through downregulation of VEGF-A/VEGFR2. Sc Pharm. 2021;89(2):23. https://doi.org/10.3390/scipharm89020023.

    Article  CAS  Google Scholar 

  71. Vafadar A, Shabaninejad Z, Movahedpour A, Fallahi F, Taghavipour M, Ghasemi Y, Akbari M, et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci. 2020;10:32. https://doi.org/10.1186/s13578-020-00397-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wang RE, Kao JLF, Hilliard CA, Pandita RK, Roti JL, Roti CR, Hunt, and John Stephen Taylor. Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. J Med Chem. 2009;52(7):1912–21. https://doi.org/10.1021/jm801445c.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Xu G, Li B, Wang T, Wan J, Zhang Y, Huang J, Shen Y. Enhancing the anti-ovarian cancer activity of quercetin using a self-assembling micelle and thermosensitive hydrogel drug delivery system. RSC Adv. 2018;8(38):21229–42. https://doi.org/10.1039/C8RA03274B.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Xu X, Chen F, Zhang L, Liu L, Zhang C, Zhang Z, Li W. Exploring the mechanisms of anti-ovarian cancer of Hedyotis diffusa Willd and Scutellaria barbata D. Don through focal adhesion pathway. J Ethnopharmacol. 2021;279(October):114343. https://doi.org/10.1016/j.jep.2021.114343.

    Article  PubMed  CAS  Google Scholar 

  75. Yan Y-B, Tian Q, Zhang J-F, Xiang Y. Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (review). Oncol Lett. 2020;20(5):1–1. https://doi.org/10.3892/ol.2020.12001.

    Article  CAS  Google Scholar 

  76. Zarghi A, Arfaei S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res. 2011;10:655–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015;2015:549412. https://doi.org/10.1155/2015/549412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS for providing the infrastructural facilities and support.

Author information

Authors and Affiliations

Authors

Contributions

GK visualized the presented idea, contributed to manuscript writing and supervised the project. DSG, VG and AK contributed to literature searches and preparing the manuscript draft. AK, MG and HST revised and approved the manuscript.

Corresponding author

Correspondence to Ginpreet Kaur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D.S., Gadi, V., Kaur, G. et al. Exploration of the Growing Therapeutic Potentials of Quercetin in Ovarian Cancer Management. Curr. Pharmacol. Rep. 9, 455–467 (2023). https://doi.org/10.1007/s40495-023-00343-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00343-x

Keywords

Navigation