Skip to main content

Advertisement

Log in

The Small Matter of a Red Ox, a Particularly Sensitive Pink Cat, and the Quest for the Yellow Stone of Wisdom

  • Redox Modulators (C Jacob, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The article describes how recent advances in chalcogen Redox Biology shape the future of nutrition, drug design, agriculture, and environmental management.

Recent Findings

Since the turn of the Millennium, the biological chemistry of redox active sulfur species has witnessed various significant developments, with cysteine side-chains in proteins and enzymes emerging as centers of redox signaling and control and inspiring new concepts, such as the sulfur redoxome, the sulfenome, and the cellular thiolstat. Since then, it has emerged that redox sensitive cysteine residues are preferred targets of Reactive Sulfur Species (RSS), certain metal ions, and the emerging class of Reactive Selenium Species (RSeS). In addition, the cellular redoxome provides the basis for targeted redox modulation, for instance via nutritional intervention in the sick and elderly; it paves the way for highly selective catalytic sensor/effector agents active against a spectrum of redox-related diseases and lightens up possible avenues leading towards green phyto-protectants, often in cahoots with modern nanotechnology. Whilst the activity of redox-active food ingredients and multifunctional redox-modulating compounds on and in cells is complicated, modern techniques such as redox proteomics and chemogenetic phenotype profiling in combination with fluorescent-based “intracellular diagnostics” can be employed to illuminate certain changes, pathways, and eventually, also mode(s) of action.

Summary

Undoubtedly, chalcogen-based redox systems will shape future research and development in nutrition, drug design, cosmetics, green agriculture, and waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Burkholz T, Jacob C. A word on redox. In: Jacob C, Kirsch G, Slusarenko A, Winyard PG, Burkholz T, editors. Recent advances in redox active plant and microbial products: from basic chemistry to widespread applications in medicine and agriculture. Dordrecht: Springer Netherlands; 2014. p. 97–116.

    Google Scholar 

  2. Trefil J, Morowitz H, Smith E. The Origin of Life: A case is made for the descent of electrons. Am Scientist. 2009;97(3):206–13. http://www.jstor.org/stable/27859328.

    Article  Google Scholar 

  3. Saurin AT, Neubert H, Brennan JP, Eaton P. Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc Natl Acad Sci U S A. 2004;101(52):17982–7. https://doi.org/10.1073/pnas.0404762101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Giles GI, Tasker KM, Jacob C. Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radical Bio Med. 2001;31(10):1279–83. https://doi.org/10.1016/S0891-5849(01)00710-9. As the titles indicates, the manuscript provides detailed insights into the role of RSS in the condition of oxidative stress.

    Article  CAS  Google Scholar 

  5. Schroder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 angstrom resolution (vol 8, pg 605, 2000). Structure. 2000;8(12):U5–U.

    Google Scholar 

  6. Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S-cerevisiae sulphiredoxin. Nature. 2003;425(6961):980–4. https://doi.org/10.1038/nature02075.

    Article  CAS  PubMed  Google Scholar 

  7. Poole LB, Karplus PA, Claiborne A. Protein sulfenic acids in redox signaling. Annu Rev Pharmacol. 2004;44:325–47. https://doi.org/10.1146/annurev.pharmtox.44.101802.121735.

    Article  CAS  Google Scholar 

  8. Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003;300(5619):650–3. https://doi.org/10.1126/science.1080405.

    Article  CAS  PubMed  Google Scholar 

  9. Roberts BR, Wood ZA, Jonsson TJ, Poole LB, Karplus PA. Oxidized and synchrotron cleaved structures of the disulfide redox center in the N-terminal domain of Salmonella typhimurium AhpF. Protein Sci. 2005;14(9):2414–20. https://doi.org/10.1110/ps.051459705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leonard SE, Reddie KG, Carroll KS. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol. 2009;4(9):783–99. https://doi.org/10.1021/cb900105q.

    Article  CAS  PubMed  Google Scholar 

  11. Chiappetta G, Ndiaye S, Igbaria A, Kumar C, Vinh J, Toledano MB. Proteome screens for Cys residues oxidation: the redoxome. Methods Enzymol. 2010;473:199–216. https://doi.org/10.1016/S0076-6879(10)73010-X.

    Article  CAS  PubMed  Google Scholar 

  12. •• Jacob C. Redox signalling via the cellular thiolstat. Biochem Soc Trans. 2011;39:1247–53. https://doi.org/10.1042/Bst0391247. The concept of cellulat thilstat is the key for understanding intracellular redox controls in the context of sensing and signalling.

    Article  CAS  PubMed  Google Scholar 

  13. Tafuri S, Cocchia N, Landolfi F, Iorio EL, Ciani F. Redoxomics and oxidative stress: from the basic research to the clinical practice. In : Free Radicals and Diseases. London: Intechopen; 2016;149–69. https://doi.org/10.5772/64577.

    Google Scholar 

  14. Nimni ME, Han B, Cordoba F. Are we getting enough sulfur in our diet? Nutr Metab. 2007;4:24. https://doi.org/10.1186/1743-7075-4-24.

    Article  CAS  Google Scholar 

  15. Parcell S. Sulfur in human nutrition and applications in medicine. Altern Med Rev. 2002;7(1):22–44.

    PubMed  Google Scholar 

  16. Komarnisky LA, Christopherson RJ, Basu TK. Sulfur: its clinical and toxicologic aspects. Nutrition. 2003;19(1):54–61.

    Article  CAS  Google Scholar 

  17. •• Giles G, Nasim M, Ali W, Jacob C. The reactive sulfur species concept: 15 years on. Antioxidants. 2017;6(2):38. The concept of RSS has been updated in last 15 years and most recent developments have been explained in detail.

    Article  Google Scholar 

  18. Giles GI, Jacob C. Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem. 2002;383(3–4):375–88. https://doi.org/10.1515/Bc.2002.042.

    Article  CAS  PubMed  Google Scholar 

  19. Schöneich CPL. Special section on redox biology of thiols in signaling pathways. Free Rad Bio Med. 2015;80:1–212.

    Article  Google Scholar 

  20. Holmgren A. Thioredoxin structure and mechanism—conformational-changes on oxidation of the active-site sulfhydryls to a disulfide. Structure. 1995;3(3):239–43. https://doi.org/10.1016/S0969-2126(01)00153-8.

    Article  CAS  PubMed  Google Scholar 

  21. Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Sign. 2000;2(4):811–U209. https://doi.org/10.1089/ars.2000.2.4-811.

    Article  CAS  Google Scholar 

  22. Arner ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–9. https://doi.org/10.1046/j.1432-1327.2000.01701.x.

    Article  CAS  PubMed  Google Scholar 

  23. Jacob C, Maret W, Vallee BL. Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci U S A. 1998;95(7):3489–94. https://doi.org/10.1073/pnas.95.7.3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maret W, Jacob C, Vallee BL, Fischer EH. Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci U S A. 1999;96(5):1936–40. https://doi.org/10.1073/pnas.96.5.1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang LJ, Maret W, Vallee BL. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci U S A. 1998;95(7):3483–8. https://doi.org/10.1073/pnas.95.7.3483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sies H. Glutathione and its role in cellular functions. Free Radical Bio Med. 1999;27(9–10):916–21. https://doi.org/10.1016/S0891-5849(99)00177-X.

    Article  CAS  Google Scholar 

  27. Ji YB, Akerboom TPM, Sies H, Thomas JA. S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione. Arch Biochem Biophys. 1999;362(1):67–78. https://doi.org/10.1006/abbi.1998.1013.

    Article  CAS  PubMed  Google Scholar 

  28. Sies H, Dafre AL, Ji YB, Akerboom TPM. Protein S-thiolation and redox regulation of membrane-bound glutathione transferase. Chem Biol Interact. 1998;112:177–85.

    Article  Google Scholar 

  29. Jacob C. A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat Prod Rep. 2006;23(6):851–63. https://doi.org/10.1039/b609523m.

    Article  CAS  PubMed  Google Scholar 

  30. Giles NM, Watts AB, Giles GI, Fry FH, Littlechild JA, Jacob C. Metal and redox modulation of cysteine protein function. Chem Biol. 2003;10(8):677–93. https://doi.org/10.1016/S1074-5521(03)00174-1.

    Article  CAS  PubMed  Google Scholar 

  31. Chouchani ET, James AM, Fearnley IM, Lilley KS, Murphy MP. Proteomic approaches to the characterization of protein thiol modification. Curr Opin Chem Biol. 2011;15(1):120–8. https://doi.org/10.1016/j.cbpa.2010.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng H, Zhang YX, Palmer LD, Kehl-Fie TE, Skaar EP, Trinidad JC, et al. Hydrogen sulfide and reactive sulfur species impact proteome S-Sulfhydration and global virulence regulation in Staphylococcus aureus. ACS Infect Dis. 2017;3(10):744–55. https://doi.org/10.1021/acsinfecdis.7b00090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Drazic A, Miura H, Peschek J, Le Y, Bach NC, Kriehuber T, et al. Methionine oxidation activates a transcription factor in response to oxidative stress. Proc Natl Acad Sci U S A. 2013;110(23):9493–8. https://doi.org/10.1073/pnas.1300578110.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aledo JC. Inferring methionine sulfoxidation and serine phosphorylation crosstalk from phylogenetic analyses. BMC Evol Biol. 2017;17:Artn 171. https://doi.org/10.1186/S12862-017-1017-9.

    Article  Google Scholar 

  35. Drazic A, Tsoutsoulopoulos A, Peschek J, Gundlach J, Krause M, Bach NC, et al. Role of cysteines in the stability and DNA-binding activity of the hypochlorite-specific transcription factor HypT. Plos One. 2013;8(10):ARTN e75683. https://doi.org/10.1371/journal.pone.0075683.

    Article  CAS  Google Scholar 

  36. Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K, Bodra N, et al. Sulfenome mining in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2014;111(31):11545–50. https://doi.org/10.1073/pnas.1411607111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Georgiou G. How to flip the (redox) switch. Cell. 2002;111(5):607–10. https://doi.org/10.1016/S0092-8674(02)01165-0.

    Article  CAS  PubMed  Google Scholar 

  38. Saidu NEB, Abu Asali I, Czepukojc B, Seitz B, Jacob C, Montenarh M. Comparison between the effects of diallyl tetrasulfide on human retina pigment epithelial cells (ARPE-19) and HCT116 cells. Biochem Biophys Acta Gen Subj. 2013;1830(11):5267–76. https://doi.org/10.1016/j.bbagen.2013.08.004.

    Article  CAS  Google Scholar 

  39. Saidu NEB, Touma R, Abu Asali I, Jacob C, Montenarh M. Diallyl tetrasulfane activates both the eIF2 alpha and Nrf2/HO-1 pathways. Biochem Biophys Acta Gen Subj. 2013;1830(1):2214–25. https://doi.org/10.1016/j.bbagen.2012.10.003.

    Article  CAS  Google Scholar 

  40. Yagdi Efe E, Mazumder A, Lee JY, Gaigneaux A, Radogna F, Nasim MJ, et al. Tubulin-binding anticancer polysulfides induce cell death via mitotic arrest and autophagic interference in colorectal cancer. Cancer Lett. 2017;410:139–57. https://doi.org/10.1016/j.canlet.2017.09.011.

    Article  CAS  PubMed  Google Scholar 

  41. Kelkel M, Cerella C, Mack F, Schneider T, Jacob C, Schumacher M, et al. ROS-independent JNK activation and multisite phosphorylation of Bcl-2 link diallyl tetrasulfide-induced mitotic arrest to apoptosis. Carcinogenesis. 2012;33(11):2162–71. https://doi.org/10.1093/carcin/bgs240.

    Article  CAS  PubMed  Google Scholar 

  42. Busch C, Jacob C, Anwar A, Burkholz T, Ba LA, Cerella C, et al. Diallylpolysulfides induce growth arrest and apoptosis. Int J Oncol. 2010;36(3):743–9. https://doi.org/10.3892/ijo_00000550.

    Article  CAS  PubMed  Google Scholar 

  43. Peacock AFA, Bullen GA, Gethings LA, Williams JP, Kriel FH, Coates J. Gold-phosphine binding to de novo designed coiled coil peptides. J Inorg Biochem. 2012;117:298–305. https://doi.org/10.1016/j.jinorgbio.2012.05.010.

    Article  CAS  PubMed  Google Scholar 

  44. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, et al. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013;14(3):6044–66. https://doi.org/10.3390/ijms14036044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmitz G, Minkel DT, Gingrich D, Shaw CF. The binding of gold (I) to metallothionein. J Inorg Biochem. 1980;12(4):293–306. https://doi.org/10.1016/S0162-0134(00)80270-6.

    Article  CAS  PubMed  Google Scholar 

  46. Owings JP, McNair NN, Mui YF, Gustafsson TN, Holmgren A, Contel M, et al. Auranofin and N-heterocyclic carbene gold-analogs are potent inhibitors of the bacteria Helicobacter pylori. Fems Microbiol Lett. 2016;363(14):ARTN fnw148. https://doi.org/10.1093/femsle/fnw148.

    Article  CAS  Google Scholar 

  47. Bindoli A, Rigobello MP, Scutari G, Gabbiani C, Casini A, Messori L. Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs. Coord Chem Rev. 2009;253(11–12):1692–707. https://doi.org/10.1016/j.ccr.2009.02.026.

    Article  CAS  Google Scholar 

  48. Ba LA, Doering M, Burkholz T, Jacob C. Metal trafficking: from maintaining the metal homeostasis to future drug design. Metallomics. 2009;1(4):292–311. https://doi.org/10.1039/b904533c.

    Article  CAS  PubMed  Google Scholar 

  49. Tessier D, Bardiaux B, Larre C, Popineau Y. Data mining techniques to study the disulfide-bonding state in proteins: signal peptide is a strong descriptor. Bioinformatics. 2004;20(16):2509–12. https://doi.org/10.1093/bioinformatics/bth332.

    Article  CAS  PubMed  Google Scholar 

  50. Waszczak C, Akter S, Jacques S, Huang JJ, Messens J, Van Breusegem F. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J Exp Bot. 2015;66(10):2923–34. https://doi.org/10.1093/jxb/erv084.

    Article  CAS  PubMed  Google Scholar 

  51. Auclair JR, Johnson JL, Liu Q, Salisbury JP, Rotunno MS, Petsko GA, et al. Post-translational modification by cysteine protects Cu/Zn-superoxide dismutase from oxidative damage. Biochemistry. 2013;52(36):6137–44. https://doi.org/10.1021/bi4006122.

    Article  CAS  PubMed  Google Scholar 

  52. Sethuraman M, Zhao C, Clavreul N, Huang H, McComb M, Costello C, et al. Identification and quantitation of oxidative post-translational modifications of cysteine thiols of p21ras that are responsible for redox modulation of its activity. Free Radical Bio Med. 2005;39:S130-S.

    Google Scholar 

  53. Seo YH, Carroll KS. Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies. Proc Natl Acad Sci U S A. 2009;106(38):16163–8. https://doi.org/10.1073/pnas.0903015106.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Michalek RD, Nelson KJ, Holbrook BC, Yi JS, Stridiron D, Daniel LW, et al. The requirement of reversible cysteine sulfenic acid formation for T cell activation and function. J Immunol. 2007;179(10):6456–67. https://doi.org/10.4049/jimmunol.179.10.6456.

    Article  CAS  PubMed  Google Scholar 

  55. Intrarapuk A, Awakairt S, Thammapalerd N, Mahannop P, Pattanawong U, Suppasiri T. Comparison between R-phycocyanin-labeled and R-phycoerythrin-labeled monoclonal antibody (Mab) probes for the detection of Entamoeba histolytica trophozoites. Southeast Asian J Trop Med Public Health. 2001;2:165–71.

    Google Scholar 

  56. Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, et al. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal. 2012;17(11):1610–55. https://doi.org/10.1089/ars.2011.4109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Butterfield DA, Gu LQ, Di Domenico F, Robinson RAS. Mass spectrometry and redox proteomics: applications in disease. Mass Spectrom Rev. 2014;33(4):277–301. https://doi.org/10.1002/mas.21374.

    Article  CAS  PubMed  Google Scholar 

  58. Butterfield DA, Perluigi M. Redox proteomics: a key tool for new insights into protein modification with relevance to disease. Antioxid Redox Signal. 2017;26(7):277–9. https://doi.org/10.1089/ars.2016.6919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saund SS, Sosa V, Henriquez S, Nguyen QNN, Bianco CL, Soeda S, et al. The chemical biology of hydropersulfides (RSSH): chemical stability, reactivity and redox roles. Arch Biochem Biophys. 2015;588:15–24. https://doi.org/10.1016/j.abb.2015.10.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schoneich C. Sulfur radical-induced redox modifications in proteins: analysis and mechanistic aspects. Antioxid Redox Signal. 2017;26(8):388–405. https://doi.org/10.1089/ars.2016.6779.

    Article  CAS  PubMed  Google Scholar 

  61. Weissgerber T, Sylvester M, Kroninger L, Dahl C. A comparative quantitative proteomic study identifies new proteins relevant for sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum. Appl Environ Microbiol. 2014;80(7):2279–92. https://doi.org/10.1128/Aem.04182-13.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Manikova D, Letavayova LM, Vlasakova D, Kosik P, Estevam EC, Nasim MJ, et al. Intracellular diagnostics: hunting for the mode of action of redox-modulating selenium compounds in selected model systems. Molecules. 2014;19(8):12258–79. https://doi.org/10.3390/molecules190812258.

    Article  CAS  PubMed  Google Scholar 

  63. Brown M, Wittwer C. Flow cytometry: principles and clinical applications in hematology. Clin Chem. 2000;46(8B):1221–9.

    CAS  PubMed  Google Scholar 

  64. Mandy FF, Bergeron M, Minkus T. Principles of flow cytometry. Transfus Sci. 1995;16(4):303–14. https://doi.org/10.1016/0955-3886(95)00041-0.

    Article  CAS  PubMed  Google Scholar 

  65. Kubbies M. Principles of proliferation analysis by flow-cytometry. Virchows Arch. 1995;427(3):328–9.

    Google Scholar 

  66. Ying J, Yang W, Xie CY, Ni QC, Pan XD, Dong JH, et al. Induction of caspase-3-dependent apoptosis in human leukemia HL-60 cells by delta-elemene. Yakugaku Zasshi. 2011;131(9):1383–94. https://doi.org/10.1248/yakushi.131.1383.

    Article  CAS  PubMed  Google Scholar 

  67. Chaitanya GV, Steven AJ, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal. 2010;8:Artn 31. https://doi.org/10.1186/1478-811x-8-31.

    Article  Google Scholar 

  68. Maurya SK, Tewari M, Sharma B, Shukla HS. Expression of procaspase 3 and activated caspase 3 and its relevance in hormone-responsive gallbladder carcinoma chemotherapy. Korean J Intern Med. 2013;28(5):573–8. https://doi.org/10.3904/kjim.2013.28.5.573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Prager-Khoutorsky M, Goncharov I, Rabinkov A, Mirelman D, Geiger B, Bershadsky AD. Allicin inhibits cell polarization, migration and division via its direct effect on microtubules. Cell Motil Cytoskeleton. 2007;64(5):321–37. https://doi.org/10.1002/cm.20185.

    Article  CAS  PubMed  Google Scholar 

  70. Hosono T, Fukao T, Ogihara J, Ito Y, Shiba H, Seki T, et al. Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification of beta-tubulin. J Biol Chem. 2005;280(50):41487–93. https://doi.org/10.1074/jbc.M507127200.

    Article  CAS  PubMed  Google Scholar 

  71. Estevam EC, Faulstich L, Griffin S, Burkholz T, Jacob C. Polysulfides in biology: from intricate chemistry to an astonishing yet hidden biological activity. Curr Org Chem. 2016;20(2):211–7. https://doi.org/10.2174/1385272819666150724233028.

    Article  CAS  Google Scholar 

  72. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Bio Med. 2001;30(11):1191–212. https://doi.org/10.1016/S0891-5849(01)00480-4.

    Article  CAS  Google Scholar 

  73. Flohe L. The fairytale of the GSSG/GSH redox potential. Biochem Biophys Acta Gen Subj. 2013;1830(5):3139–42. https://doi.org/10.1016/j.bbagen.2012.10.020.

    Article  CAS  Google Scholar 

  74. Gruhlke MC, Slusarenko AJ. The cellular ‘thiolstat’ as an emerging potential target of some plant secondary metabolites. In: Jacob C, Kirsch G, Slusarenko A, Winyard PG, Burkholz T, editors. Recent advances in redox active plant and microbial products: from basic chemistry to widespread applications in medicine and agriculture. Dordrecht: Springer Netherlands; 2014. p. 235–62.

    Google Scholar 

  75. Zhang YS. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol Nutr Food Res. 2010;54(1):127–35. https://doi.org/10.1002/mnfr.200900323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Borlinghaus J, Albrecht F, Gruhlke MCH, Nwachukwu ID, Slusarenko AJ. Allicin: chemistry and biological properties. Molecules. 2014;19(8):12591–618. https://doi.org/10.3390/molecules190812591.

    Article  CAS  PubMed  Google Scholar 

  77. Kuo PC, Brown DA, Scofield BA, Yu IC, Chang FL, Wang PY, et al. 3H-1,2-dithiole-3-thione as a novel therapeutic agent for the treatment of experimental autoimmune encephalomyelitis. Brain Behav Immun. 2016;57:173–86. https://doi.org/10.1016/j.bbi.2016.03.015.

    Article  CAS  PubMed  Google Scholar 

  78. Ney Y, Jawad Nasim M, Kharma A, Youssef LA, Jacob C. Small molecule catalysts with therapeutic potential. Molecules. 2018;23(4). https://doi.org/10.3390/molecules23040765.

    Article  Google Scholar 

  79. • Jawad Nasim M, Ali W, Dominguez-Alvarez E, da Silva Junior EN, Saleem RSZ, Jacob C. Chapter 10 reactive selenium species: redox modulation, antioxidant, antimicrobial and anticancer activities. Organoselenium compounds in biology and medicine: synthesis, biological and therapeutic treatments. The Royal Society of Chemistry; 2018. pp. 277–302. The concept of RSS has paved the way for the concept of reactive selenium species (RSeS) which is an intersting emerging topic on its own.

  80. Ko JH, Lee SG, Yang WM, Um JY, Sethi G, Mishra S et al. The application of embelin for cancer prevention and therapy. Molecules. 2018;23(3). https://doi.org/10.3390/molecules23030621.

    Article  Google Scholar 

  81. Mániková D, Šestáková Z, Rendeková J, Vlasáková D, Lukáčová P, Paegle E, et al. Resveratrol-inspired benzo[b]selenophenes act as anti-oxidants in yeast. Molecules. 2018;23(2):507.

    Article  Google Scholar 

  82. Liu W, Zhang MJ, Feng JQ, Fan AQ, Zhou YL, Xu YJ. The influence of quercetin on maternal immunity, oxidative stress, and inflammation in mice with exposure of fine particulate matter during gestation. Int J Env Res Pub Health. 2017;14(6):Artn 592. https://doi.org/10.3390/Ijerph14060592.

    Article  Google Scholar 

  83. Huang X, Wang J, Chen X, Liu P, Wang S, Song F, et al. The prenylflavonoid xanthohumol reduces Alzheimer-like changes and modulates multiple pathogenic molecular pathways in the Neuro2a/APPswe cell model of AD. Front Pharmacol. 2018;9:199. https://doi.org/10.3389/fphar.2018.00199.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Du P, Viswanathan UM, Khairan K, Buric T, Saidu NEB, Xu ZJ, et al. Synthesis of amphiphilic, chalcogen-based redox modulators with in vitro cytotoxic activity against cancer cells, macrophages and microbes. MedChemComm. 2014;5(1):25–31. https://doi.org/10.1039/c3md00204g.

    Article  CAS  Google Scholar 

  85. Salim S. Oxidative stress and psychological disorders. Curr Neuropharmacol. 2014;12(2):140–7. https://doi.org/10.2174/1570159X11666131120230309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Siegrist J, Sies H. Disturbed redox homeostasis in oxidative distress: a molecular link from chronic psychosocial work stress to coronary heart disease? Circ Res. 2017;121(2):103–5. https://doi.org/10.1161/CIRCRESAHA.117.311182.

    Article  CAS  PubMed  Google Scholar 

  87. Ashfield-Watt PAL, Welch AA, Day NE, Binham SA. Is 'five-a-day' an effective way of increasing fruit and vegetable intakes? Public Health Nutr. 2004;7(2):257–61. https://doi.org/10.1079/Phn2003524.

    Article  CAS  PubMed  Google Scholar 

  88. Ungar N, Sieverding M, Stadnitski T. Increasing fruit and vegetable intake. “five a day” versus “just one more”. Appetite. 2013;65:200–4. https://doi.org/10.1016/j.appet.2013.02.007.

    Article  PubMed  Google Scholar 

  89. Grace MH, Truong AN, Truong VD, Raskin I, Lila MA. Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients. Food Sci Nutr. 2015;3(5):415–24. https://doi.org/10.1002/fsn3.234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Monacelli F, Acquarone E, Giannotti C, Borghi R, Nencioni A. Vitamin C, Aging and Alzheimer’s Disease. Nutrients. 2017;9(7):Artn 670. https://doi.org/10.3390/Nu9070670.

    Article  Google Scholar 

  91. Hoye C, Ross CF. Total phenolic content, consumer acceptance, and instrumental analysis of bread made with grape seed flour. J Food Sci. 2011;76(7):S428–S36. https://doi.org/10.1111/j.1750-3841.2011.02324.x.

    Article  CAS  PubMed  Google Scholar 

  92. Parker AG, Byars A, Purpura M, Jäger R. The effects of alpha-glycerylphosphorylcholine, caffeine or placebo on markers of mood, cognitive function, power, speed, and agility. J Int Soc Sport Nutr. 2015;12(Suppl 1):41. https://doi.org/10.1186/1550-2783-12-s1-p41.

    Article  Google Scholar 

  93. Stark AH, Crawford MA, Reifen R. Update on alpha-linolenic acid. Nutr Rev. 2008;66(6):326–32. https://doi.org/10.1111/j.1753-4887.2008.00040.x.

    Article  PubMed  Google Scholar 

  94. Denis I, Potier B, Heberden C, Vancassel S. Omega-3 polyunsaturated fatty acids and brain aging. Curr Opin Clin Nutr. 2015;18(2):139–46. https://doi.org/10.1097/Mco.0000000000000141.

    Article  CAS  Google Scholar 

  95. Lima EBC, Sousa CNS, Meneses LN, Ximenes NC, Santos MA, Vasconcelos GS, et al. Cocos nucifera (L.) (Arecaceae): a phytochemical and pharmacological review. Braz J Med Biol Res. 2015;48(11):953–64. https://doi.org/10.1590/1414-431X20154773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Abdel-Hameed ESS, Bazaid SA, Salman MS. Characterization of the phytochemical constituents of taif rose and its antioxidant and anticancer activities. Biomed Res Int. 2013. Artn 345465. https://doi.org/10.1155/2013/345465.

    Article  Google Scholar 

  97. Babizhayev MA, Deyev AI, Yermakova VN, Semiletov YA, Davydova NG, Kurysheva NI, et al. N-acetylcarnosine, a natural histidine-containing dipeptide, as a potent ophthalmic drug in treatment of human cataracts. Peptides. 2001;22(6):979–94. https://doi.org/10.1016/S0196-9781(01)00407-7.

    Article  CAS  PubMed  Google Scholar 

  98. Subramanian AP, John AA, Vellayappan MV, Balaji A, Jaganathan SK, Mandal M, et al. Honey and its phytochemicals: plausible agents in combating colon cancer through its diversified actions. J Food Biochem. 2016;40(4):613–29. https://doi.org/10.1111/jfbc.12239.

    Article  CAS  Google Scholar 

  99. Visioli F, Galli C. Biological properties of olive oil phytochemicals. Crit Rev Food Sci. 2002;42(3):209–21. https://doi.org/10.1080/10408690290825529.

    Article  CAS  Google Scholar 

  100. Valizadeh S, Fakheri T, Mahmoudi R, Katiraee F, Ghajarbeygi P. Phytochemical and antimicrobial properties of lavender angustifolia and Eucalyptus camaldulensis essential oils. Journal of Food Safety and Hygiene. 2015;1(2):46–52.

    Google Scholar 

  101. Piccolella S, Fiorentino A, Pacifico S, D'Abrosca B, Uzzo P, Monaco P. Antioxidant properties of sour cherries (Prunus cerasus L.): role of colorless phytochemicals from the methanolic extract of ripe fruits. J Agric Food Chem. 2008;56(6):1928–35. https://doi.org/10.1021/jf0734727.

    Article  CAS  PubMed  Google Scholar 

  102. Carbonara T, Pascale R, Argentieri MP, Papadia P, Fanizzi FP, Villanova L, et al. Phytochemical analysis of a herbal tea from Artemisia annua L. J Pharm Biomed Anal. 2012;62:79–86. https://doi.org/10.1016/j.jpba.2012.01.015.

    Article  CAS  PubMed  Google Scholar 

  103. Kamath S, Skeels M, Pai A. Significant differences in alkaloid content of Coptis chinensis (Huanglian), from its related American species. Chin Med. 2009;4:17. https://doi.org/10.1186/1749-8546-4-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mena P, Cirlini M, Tassotti M, Herrlinger KA, Dall'Asta C, Del Rio D. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules. 2016;21(11):Artn 1576. https://doi.org/10.3390/Molecules21111576.

    Article  Google Scholar 

  105. Misra BB, Dey S. Comparative phytochemical analysis and antibacterial efficacy of in vitro and in vivo extracts from East Indian sandalwood tree (Santalum album L.). Lett Appl Microbiol. 2012;55(6):476–86. https://doi.org/10.1111/lam.12005.

    Article  CAS  PubMed  Google Scholar 

  106. Mertens M, Buettner A, Kirchhoff E. The volatile constituents of frankincense - a review. Flavour Frag J. 2009;24(6):279–300. https://doi.org/10.1002/ffj.1942.

    Article  CAS  Google Scholar 

  107. Srivastava JK, Shankar E, Gupta S. Chamomile: a herbal medicine of the past with a bright future (review). Mol Med Rep. 2010;3(6):895–901. https://doi.org/10.3892/mmr.2010.377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Farris P. Idebenone, green tea, and coffeeberry (R) extract: new and innovative antioxidants. Dermatol Ther. 2007;20(5):322–9. https://doi.org/10.1111/j.1529-8019.2007.00146.x.

    Article  PubMed  Google Scholar 

  109. Nejatzadeh-Barandozi F. Antibacterial activities and antioxidant capacity of Aloe vera. Org Med Chem Lett. 2013;3(1):5. https://doi.org/10.1186/2191-2858-3-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee KW, Kim YJ, Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem. 2003;51(25):7292–5. https://doi.org/10.1021/Jf0344385.

    Article  CAS  PubMed  Google Scholar 

  111. Staiger C. Comfrey: a clinical overview. Phytother Res. 2012;26(10):1441–8. https://doi.org/10.1002/ptr.4612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wijesundara NM, Sekhon-Loodu S, Rupasinghe HPV. Phytochemical-rich medicinal plant extracts suppress bacterial antigens-induced inflammation in human tonsil epithelial cells. Peerj. 2017;5:Artn E3469. https://doi.org/10.7717/Peerj.3469.

    Article  Google Scholar 

  113. Research GV. Natural antioxidants market is expected to grow rapidly, will be worth $4.14 billion by 2022: new report by grand view research, Inc 2015.

  114. Wawruszak A, Czerwonka A, Okla K, Rzeski W. Anticancer effect of ethanol Lycium barbarum (goji berry) extract on human breast cancer T47D cell line. Nat Prod Res. 2016;30(17):1993–6. https://doi.org/10.1080/14786419.2015.1101691.

    Article  CAS  PubMed  Google Scholar 

  115. Ho LH, Bhat R. Exploring the potential nutraceutical values of durian (Durio zibethinus L.)—an exotic tropical fruit. Food Chem. 2015;168:80–9. https://doi.org/10.1016/j.foodchem.2014.07.020.

    Article  CAS  PubMed  Google Scholar 

  116. Griffin S, Masood MI, Nasim MJ, Sarfraz M, Ebokaiwe AP, Schafer KH et al. Natural nanoparticles: a particular matter inspired by nature. antioxidants (basel). 2017;7(1). https://doi.org/10.3390/antiox7010003.

    Article  Google Scholar 

  117. Cost. Personalized nutrition in aging society: redox control of major age-related diseases. COST Association COST Action CA16112. 2016. http://www.cost.eu/COST_Actions/ca/CA16112. Accessed 22/02 2018.

  118. Turner E, Klevit R, Hager LJ, Shapiro BM. Ovothiols, a family of redox-active mercaptohistidine compounds from marine invertebrate eggs. Biochemistry. 1987;26(13):4028–36. https://doi.org/10.1021/Bi00387a043.

    Article  CAS  PubMed  Google Scholar 

  119. Russo GL, Russo M, Castellano I, Napolitano A, Palumbo A. Ovothiol isolated from sea urchin oocytes induces autophagy in the Hep-G2 cell line. Mar Drugs. 2014;12(7):4069–85. https://doi.org/10.3390/md12074069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lo YC, Lin SY, Ulziijargal E, Chen SY, Chien RC, Tzou YJ, et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int J Med Mushrooms. 2012;14(4):357–63. https://doi.org/10.1615/IntJMedMushr.v14.i4.30.

    Article  CAS  PubMed  Google Scholar 

  121. Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: a rich source of the antioxidants ergothioneine and glutathione. Food Chem. 2017;233:429–33. https://doi.org/10.1016/j.foodchem.2017.04.109.

    Article  CAS  PubMed  Google Scholar 

  122. Yamashita Y, Yabu T, Yamashita M. Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism. World J Biol Chem. 2010;1(5):144–50. https://doi.org/10.4331/wjbc.v1.i5.144.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ey J, Schomig E, Taubert D. Dietary sources and antioxidant effects of ergothioneine. J Agric Food Chem. 2007;55(16):6466–74. https://doi.org/10.1021/jf071328f.

    Article  CAS  PubMed  Google Scholar 

  124. Deutsch JC. Ascorbic acid and dehydroascorbic acid interconversion without net oxidation or reduction. Anal Biochem. 1997;247(1):58–62. https://doi.org/10.1006/abio.1997.2035.

    Article  CAS  PubMed  Google Scholar 

  125. Yamauchi R, Yagi Y, Kato K. Oxidation of alpha-tocopherol during the peroxidation of dilinoleoylphosphatidylcholine in liposomes. Biosci Biotechnol Biochem. 1996;60(4):616–20. https://doi.org/10.1271/bbb.60.616.

    Article  CAS  PubMed  Google Scholar 

  126. Oldenburg J, Marinova M, Moier-Reible C, Watzka M. The vitamin K cycle. Vitam Horm. 2008;78:35–62. https://doi.org/10.1016/S0083-6729(07)00003-9.

    Article  CAS  PubMed  Google Scholar 

  127. Lebeuf R, Nardello-Rataj V, Aubry J-M. Hydroquinone-based biarylic polyphenols as redox organocatalysts for dioxygen reduction: dramatic effect of orcinol substituent on the catalytic activity. Adv Synth Catal. 2017;359(2):268–78. https://doi.org/10.1002/adsc.201600819.

    Article  CAS  Google Scholar 

  128. Takahama U, Oniki T. Flavonoids and some other phenolics as substrates of peroxidase: physiological significance of the redox reactions. J Plant Res. 2000;113(1111):301–9. https://doi.org/10.1007/Pl00013933.

    Article  CAS  Google Scholar 

  129. Jacob C. Special issue “small molecule catalysts with therapeutic potential”. Molecules 2017.

  130. Witek K, Nasim MJ, Bischoff M, Gaupp R, Arsenyan P, Vasiljeva J et al. Selenazolinium salts as “small molecule catalysts” with high potency against eskape bacterial pathogens. Molecules. 2017;22(12). https://doi.org/10.3390/molecules22122174.

    Article  Google Scholar 

  131. Fahey RC. Novel thiols of prokaryotes. Annu Rev Microbiol. 2001;55:333–56. https://doi.org/10.1146/annurev.micro.55.1.333.

    Article  CAS  PubMed  Google Scholar 

  132. Hearn JM, Romero-Canelon I, Munro AF, Fu Y, Pizarro AM, Garnett MJ, et al. Potent organo-osmium compound shifts metabolism in epithelial ovarian cancer cells. Proc Natl Acad Sci U S A. 2015;112(29):E3800–E5. https://doi.org/10.1073/pnas.1500925112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Coverdale JPC, Romero-Canelón I, Sanchez-Cano C, Clarkson GJ, Habtemariam A, Wills M, et al. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nat Chem. 2018; https://doi.org/10.1038/nchem.2918. https://www.nature.com/articles/nchem.2918#supplementary-information

    Article  CAS  Google Scholar 

  134. Barry NP, Sadler PJ. Dicarba-closo-dodecarborane-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium: biological relevance and synthetic strategies. Chem Soc Rev. 2012;41(8):3264–79. https://doi.org/10.1039/c2cs15300a.

    Article  CAS  PubMed  Google Scholar 

  135. Du P, Saidu NEB, Intemann J, Jacob C, Montenarh M. A new tellurium-containing amphiphilic molecule induces apoptosis in HCT116 colon cancer cells. Biochem Biophys Acta Gen Subj. 2014;1840(6):1808–16. https://doi.org/10.1016/j.bbagen.2014.02.003.

    Article  CAS  Google Scholar 

  136. Chatterjee A, Zhu YX, Tong Q, Kosmacek EA, Lichter EZ, Oberley-Deegan RE. The addition of manganese porphyrins during radiation inhibits prostate cancer growth and simultaneously protects normal prostate tissue from radiation damage. Antioxidants. 2018;7(1):Artn 21. https://doi.org/10.3390/Antiox7010021.

    Article  Google Scholar 

  137. Zhao Y, Farrer NJ, Li H, Butler JS, McQuitty RJ, Habtemariam A, et al. De novo generation of singlet oxygen and ammine ligands by photoactivation of a platinum anticancer complex. Angew Chem. 2013;52(51):13633–7. https://doi.org/10.1002/anie.201307505.

    Article  CAS  Google Scholar 

  138. Lazarevic T, Rilak A, Bugarcic ZD. Platinum, palladium, gold and ruthenium complexes as anticancer agents: current clinical uses, cytotoxicity studies and future perspectives. Eur J Med Chem. 2017;142:8–31. https://doi.org/10.1016/j.ejmech.2017.04.007.

    Article  CAS  PubMed  Google Scholar 

  139. Alexandre J, Nicco C, Chereau C, Laurent A, Weill B, Goldwasser F, et al. Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst. 2006;98(4):236–44. https://doi.org/10.1093/jnci/djj049.

    Article  CAS  PubMed  Google Scholar 

  140. Heer CD, Davis AB, Riffe DB, Wagner BA, Falls KC, Allen BG et al. Superoxide dismutase mimetic GC4419 enhances the oxidation of pharmacological ascorbate and its anticancer effects in an H(2)O(2)-dependent manner. Antioxidants (Basel). 2018;7(1). https://doi.org/10.3390/antiox7010018.

    Article  Google Scholar 

  141. Doering M, Ba LA, Lilienthal N, Nicco C, Scherer C, Abbas M, et al. Synthesis and selective anticancer activity of organochalcogen based redox catalysts. J Med Chem. 2010;53(19):6954–63. https://doi.org/10.1021/Jm100576z.

    Article  CAS  PubMed  Google Scholar 

  142. Lin J, Sahakian DC, de Morais SMF, Xu JH, Polzer RJ, Winter SM. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr Top Med Chem. 2003;3(10):1125–54. https://doi.org/10.2174/1568026033452096.

    Article  PubMed  Google Scholar 

  143. Katsura T, Inui K. Intestinal absorption of drugs mediated by drug transporters: mechanisms and regulation. Drug Metab Pharmacokinet. 2003;18(1):1–15.

    Article  CAS  Google Scholar 

  144. Coppola M, Mondola R. Synthetic cathinones: chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as “bath salts” or “plant food”. Toxicol Lett. 2012;211(2):144–9. https://doi.org/10.1016/j.toxlet.2012.03.009.

    Article  CAS  PubMed  Google Scholar 

  145. Kalepu S, Nekkanti V. Improved delivery of poorly soluble compounds using nanoparticle technology: a review. Drug Deliv Transl Res. 2016;6(3):319–32. https://doi.org/10.1007/s13346-016-0283-1.

    Article  CAS  PubMed  Google Scholar 

  146. ten Hove JB, Wang JY, van Oosterom MN, van Leeuwen FWB, Velders AH. Size-sorting and pattern formation of nanoparticle-loaded micellar superstructures in biconcave thin films. ACS Nano. 2017;11(11):11225–31. https://doi.org/10.1021/acsnano.7b05541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mevel M, Sainlos M, Chatin B, Oudrhiri N, Hauchecorne M, Lambert O, et al. Paromomycin and neomycin B derived cationic lipids: synthesis and transfection studies. J Control Release. 2012;158(3):461–9. https://doi.org/10.1016/j.jconrel.2011.12.019.

    Article  CAS  PubMed  Google Scholar 

  148. Faulstich L, Griffin S, Nasim MJ, Masood MI, Ali W, Alhamound S, et al. Nature’s hat-trick: can we use sulfur springs as ecological source for materials with agricultural and medical applications? Int Biodeter Biodegrad. 2017;119:678–86. https://doi.org/10.1016/j.ibiod.2016.08.020.

    Article  CAS  Google Scholar 

  149. Schneider T, Baldauf A, Ba LA, Jamier V, Khairan K, Sarakbi MB, et al. Selective antimicrobial activity associated with sulfur nanoparticles. J Biomed Nanotechnol. 2011;7(3):395–405. https://doi.org/10.1166/jbn.2011.1293.

    Article  CAS  PubMed  Google Scholar 

  150. Tittikpina NK, Atakpama W, Pereki H, Nasim MJ, Ali W, Fontanay S, et al. ‘Capiture’ plants with interesting biological activities: a case to go. Open Chem. 2017;15(1):208–18. https://doi.org/10.1515/chem-2017-0024.

    Article  Google Scholar 

  151. Griffin S, Tittikpina NK, Al-marby A, Alkhayer R, Denezhkin P, Witek K, et al. Turning waste into value: nanosized natural plant materials of Solanum incanum L. and Pterocarpus erinaceus poir with promising antimicrobial activities. Pharmaceutics. 2016;8(2):11. https://doi.org/10.3390/pharmaceutics8020011.

    Article  CAS  PubMed Central  Google Scholar 

  152. Griffin S, Alkhayer R, Mirzoyan S, Turabyan A, Zucca P, Sarfraz M, et al. Nanosizing cynomorium: thumbs up for potential antifungal applications. Inventions. 2017;2(3):24.

    Article  Google Scholar 

  153. Griffin S, Sarfraz M, Farida V, Nasim MJ, Ebokaiwe AP, Keck CM, et al. No time to waste organic waste: nanosizing converts remains of food processing into refined materials. J Environ Manag. 2018;210:114–21. https://doi.org/10.1016/j.jenvman.2017.12.084.

    Article  Google Scholar 

  154. Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;370(1):202–9. https://doi.org/10.1016/j.ijpharm.2008.11.029.

    Article  CAS  PubMed  Google Scholar 

  155. Pyo S, Meinke M, Keck C, Müller R. Rutin—increased antioxidant activity and skin penetration by nanocrystal technology (smartCrystals). Cosmetics. 2016;3(1):9.

    Article  Google Scholar 

  156. Kimura H. Hydrogen sulfide and polysulfides as biological mediators. Molecules. 2014;19(10):16146–57. https://doi.org/10.3390/molecules191016146.

    Article  CAS  PubMed  Google Scholar 

  157. Estevam EC, Griffin S, Nasim MJ, Denezhkin P, Schneider R, Lilischkis R, et al. Natural selenium particles from Staphylococcus carnosus: hazards or particles with particular promise? J Hazard Mater. 2017;324:22–30. https://doi.org/10.1016/j.jhazmat.2016.02.001.

    Article  CAS  PubMed  Google Scholar 

  158. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. 2016;100(6):2555–66. https://doi.org/10.1007/s00253-016-7300-7.

    Article  CAS  PubMed  Google Scholar 

  159. Zonaro E, Lampisl S, Tumer RJ, Qazi SJS, Vallini G. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol. 2015;6:Artn 584. https://doi.org/10.3389/Fmicb.2015.00584.

    Article  Google Scholar 

  160. Alcantara S, Velasco A, Munoz A, Cid J, Revah S, Razo-Flores E. Hydrogen sulfide oxidation by a microbial consortium in a recirculation reactor system: sulfur formation under oxygen limitation and removal of phenols. Environ Sci Technol. 2004;38(3):918–23. https://doi.org/10.1021/es034527y.

    Article  CAS  PubMed  Google Scholar 

  161. Griffin S, Sarfraz M, Hartmann SF, Pinnapireddy SR, Nasim MJ, Bakowsky U et al. Resuspendable powders of lyophilized chalcogen particles with activity against microorganisms. Antioxidants (Basel). 2018;7(2). https://doi.org/10.3390/antiox7020023.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express special thanks to Ken Rory, Ashfiq Al-Fakhim, Rosa Ponte, Vulgar Prol, Trafique Basel, and many other colleagues of the “Academiacs International” (www.academiacs.eu) and “Pharmasophy” networks for helpful discussions and inspiration.

Funding

This study received financial support from the University of Saarland, the “Landesforschungsförderungsprogramm” of the state of Saarland (Grant No. WT/2 – LFFP 16/01), the INTERREGVAGR program (BIOVAL, Grant No. 4-09-21) and the European NutRedOx (CA16112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Jawad Nasim.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Redox Modulators

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasim, M.J., Denezhkin, P., Sarfraz, M. et al. The Small Matter of a Red Ox, a Particularly Sensitive Pink Cat, and the Quest for the Yellow Stone of Wisdom. Curr Pharmacol Rep 4, 380–396 (2018). https://doi.org/10.1007/s40495-018-0152-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-018-0152-3

Keywords

Navigation