Skip to main content

Advertisement

Log in

Defective JAK-STAT Pathway Signaling Contributes to Autoimmune Diseases

  • Kinase Inhibitor (A Minden, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Here, we systematically review the published literature indicating that aberrant regulation of Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling was associated with the autoimmune disorders, rheumatoid arthritis, systemic lupus erythematosus, psoriasis/psoriatic arthritis, multiple sclerosis, inflammatory bowel diseases, and ankylosing spondylitis.

Pertinent Findings

The autoimmune disorders discussed in this review are characterized by several alterations resulting in abnormal JAK-STAT signaling. These abnormalities in JAK-STAT signaling include (1) constitutive activation of both the interleukin-6(IL-6)/interleukin-6 receptor (IL-6R) canonical and IL-6 trans-signaling pathway, the latter involving soluble IL-6R; (2) the hyperactivation of JAK/STAT signaling as a response to the significantly elevated levels of pro-inflammatory “immunocytokines”, exemplified by IL-6, IL-15, IL-17, IL-23, interferon-γ; and (3) the reduced activity of the negative regulators of JAK-STAT signaling, including suppressor of cytokine signaling and protein inhibitor of activated STATs as well as protein tyrosine phosphatases-1, -2, which was shown to inhibit STAT-signaling.

Summary

The involvement of abnormal JAK-STAT signaling in autoimmune disorders has led to the development of JAK small molecule inhibitors (SMIs), such as tofacitinib, ruxolitinib, and baricitinib for the therapy of rheumatoid arthritis, psoriasis/psoriatic arthritis, and Crohn’s disease. However, the extent to which treatment of these diseases with JAK SMIs will result in blunting the “cross-talk” between the JAK-STAT signaling pathway and the other signaling pathways known to participate in autoimmune disorders remains to be determined, involving the mitogen-activated protein kinase pathway and the phosphatidylinositide/Akt/mechanistic target of rapamycin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Darnell JR Jr. STATS and gene regulation. Science. 1997;277:1630–5.

    CAS  PubMed  Google Scholar 

  2. Leonard WJ, O’Shea JJ. JAKS and STATs: biological implications. Annu Rev Immunol. 1998;16:293–322.

    CAS  PubMed  Google Scholar 

  3. Ivashkiv LB, Hu X. Signaling by STATs. Arthritis Res Ther. 2004;6:159–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178:2623–9.

    CAS  PubMed  Google Scholar 

  5. Malemud CJ, Pearlman E. Targeting JAK/STAT signaling pathway in inflammatory diseases. Curr Signal Transduction Ther. 2009;4:201–21.

    CAS  Google Scholar 

  6. Stark GR, Darnell JE Jr. The JAK-STAT pathway at 20. Immunity. 2012;36:503–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Müller-Ladner U, Judex M, Ballhorn W, et al. Activation of the IL-4 STAT pathway in rheumatoid arthritis. J Immunol. 2000;164:3894–901.

    PubMed  Google Scholar 

  8. Yokota A, Narazaki N, Shima Y, et al. Preferential and persistent activation of the STAT1 pathway in rheumatoid synovial fluid cells. J Rheumatol. 2001;28:1952–9.

    CAS  PubMed  Google Scholar 

  9. Kasperkovitz PV, Verbeet NL, Smeets TJ. Activation of the STAT1 pathway in rheumatoid arthritis. Ann Rheum Dis. 2006;65:149–56.

    Google Scholar 

  10. Walker JG, Ahern MG, Coleman M, Weedon H, Papangelis V, Beroukas D, et al. Expression of Jak3, STAT1, STAT4 and STAT6 in inflammatory arthritis: unique Jak3 and STAT4 expression in dendritic cells and seropositive rheumatoid arthritis. Ann Rheum Dis. 2006;65:149–56.

    CAS  PubMed  Google Scholar 

  11. Walker JG, Ahern MG, Coleman M, et al. Characterisation of a dendritic cell subset in synovial tissue which strongly expresses Jak/STAT transcription factors from patients with rheumatoid arthritis. Ann Rheum Dis. 2007;66:992–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Isomäki P, Alanärä T, Isohanni P, et al. The expression of SOCS is altered in rheumatoid arthritis. Rheumatology (Oxford). 2007;46:1538–46.

    Google Scholar 

  13. Malemud CJ, Meszaros EC, Wylie MA, et al. Matrix metalloproteinase-9 production in immortalized human chondrocyte lines. J Clin Cell Immunol. 2016;7:422.

    PubMed  PubMed Central  Google Scholar 

  14. Malemud CJ. Negative regulators of JAK/STAT signaling in rheumatoid arthritis and osteoarthritis. Int J Mol Sci. 2017;18:484.

    PubMed Central  Google Scholar 

  15. Kawasaki M, Fujishiro M, Yamaguchi A, Nozawa K, Kaneko H, Takasaki Y, et al. Possible role of the JAK/STAT pathways in the regulation of T cell-interferon related genes in systemic lupus erythematosus. Lupus. 2011;20:1231–9.

    CAS  PubMed  Google Scholar 

  16. Meshaal S, El Refai B, El Saie A, et al. Signal transducer and activator of transcription 5 is implicated in disease activity in adult and juvenile onset systemic lupus erythematosus. Clin Rheumatol. 2016;35:1515–20.

    PubMed  Google Scholar 

  17. Goropevšek A, Holcar M, Avčin T. The role of STAT signaling pathways in the pathogenesis of systemic lupus erythematosus. Clin Rev Allergy Immunol. 2017;52:164–81.

    PubMed  Google Scholar 

  18. Welsch K, Holstein J, Laurence A, Ghoreschi K. Targeting JAK/STAT signaling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol. 2017;47:1096–107.

    CAS  PubMed  Google Scholar 

  19. Calautti E, Avalle L, Poli V. Psoriasis: a STAT3-centric view. Int J Mol Sci. 2018;19:E171.

  20. Fiocco U, Accordi B, Martini V, Oliviero F, Facco M, Cabrelle A, et al. JAK/STAT/PKCδ molecular pathways in synovial T lymphocytes reflect the in vivo T helper-17 expansion in psoriatic arthritis. Immunol Res. 2014;58:61–9.

    CAS  PubMed  Google Scholar 

  21. Costa L, Del Puente A, Peluso R, et al. Small molecule therapy for managing moderate to severe psoriatic arthritis. Expert Opin Pharmacother. 2017;18:1557–67.

    CAS  PubMed  Google Scholar 

  22. Cannella B, Raine CS. Multiple sclerosis: cytokine receptors on oligodendrocytes predict innate regulation. Ann Neurol. 2004;55:46–57.

    CAS  PubMed  Google Scholar 

  23. Egwuagu CE, Larkin J III. Therapeutic targeting of STAT pathways in CNS autoimmune diseases. JAKSTAT. 2013;2:e24134.

    PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Gibson SA, Benveniste EN, Qin H. Opportunities for translation from the bench: therapeutic intervention of the JAK/STAT pathway in neuroinflammatory diseases. Crit Rev Immunol. 2015;35:505–27.

    PubMed  PubMed Central  Google Scholar 

  25. Yan Z, Gibson SA, Buckley JA, Qin H, Benveniste EN. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol. 2018;189:4–13.

    CAS  PubMed  Google Scholar 

  26. Hatami M, Salmani T, Arsang-Jang S, et al. STAT5A and STAT6 gene expression levels in multiple sclerosis patients. Cytokine. 2018;106:108–13.

    CAS  PubMed  Google Scholar 

  27. Lovato P, Brender C, Agnholt J, Kelsen J, Kaltoft K, Svejgaard A, et al. Constitutive STAT3 activation in intestinal T cells from patients with Crohn’s disease. J Biol Chem. 2003;278:16777–81.

    CAS  PubMed  Google Scholar 

  28. Mitsuyama K, Matsumoto S, Masuda J, Yamasakii H, Kuwaki K, Takedatsu H, et al. Therapeutic strategies for targeting IL-6/STAT3 cytokine signaling pathway in inflammatory bowel disease. Anticancer Res. 2007;27:3749–56.

    CAS  PubMed  Google Scholar 

  29. Coskun M, Salem M, Pedersen J, Nielsen OH. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res. 2013;76:1–8.

    CAS  PubMed  Google Scholar 

  30. Galien R. Janus kinases in inflammatory bowel disease: four kinases for multiple purposes. Pharmacol Rep. 2016;68:789–96.

    CAS  PubMed  Google Scholar 

  31. Flamant M, Rigaill J, Paul S, Roblin X. Advances in the development of Janus kinase inhibitors in inflammatory bowel disease: future prospects. Drugs. 2017;77:1057–68.

    CAS  PubMed  Google Scholar 

  32. Ferguson LR, Han DY, Fraser AG, Huebner C, Lam WJ, Morgan AR, et al. Genetic factors in chronic inflammation: single nucleotide polymorphisms in the JAK-STAT pathway, susceptibility to DNA damage and Crohn’s disease in a New Zealand population. Mutat Res. 2010;690:108–15.

    CAS  PubMed  Google Scholar 

  33. Katz JA, Itoh J, Fiocchi C. Pathogenesis of inflammatory bowel disease. Curr Opin Gastroenterol. 1999;15:291–7.

    CAS  PubMed  Google Scholar 

  34. Shuai K. Regulation of cytokine signaling pathways by PIAS proteins. Cell Res. 2006;16:196–202.

    CAS  PubMed  Google Scholar 

  35. Croker BA, Kiu H, Nicholson SE. SOCS regulation of the JAK/STAT signaling pathway. Semin Cell Dev Biol. 2008;19:414–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yin Y, Liu W, Dai Y. SOCS3 and its role in associated diseases. Hum Immunol. 2015;76:775–80.

    CAS  PubMed  Google Scholar 

  37. Malemud CJ. Suppressor of cytokine signaling and rheumatoid arthritis. Integr Mol Med. 2016;3:17–20.

    Google Scholar 

  38. Johnson ES. Protein modification by SUMO. Annu Rev Biochem. 2004;73:355–82.

    CAS  PubMed  Google Scholar 

  39. Lao M, Shi M, Zou Y, Huang M, Ye Y, Qiu Q, et al. Protein inhibitor of activated STAT3 regulates migration, invasion and activation of fibroblast-like synoviocytes in rheumatoid arthritis. J Immunol. 2016;196:596–606.

    CAS  PubMed  Google Scholar 

  40. Gao W, McGarry T, Orr C, McCormick J, Veale DJ, Fearon U. Tofacitinib regulates synovial inflammation in psoriatic arthritis, inhibiting STAT activation and induction of negative feedback inhibitors. Ann Rheum Dis. 2016;75:311–5.

    CAS  PubMed  Google Scholar 

  41. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017;77:521–46.

    CAS  PubMed  Google Scholar 

  42. Izzo R, Bevivino G, Monteleone G. Tofacitinib for the treatment of ulcerative colitis. Expert Opin Investig Drugs. 2016;25:991–7.

    CAS  PubMed  Google Scholar 

  43. Firestein GS. Immunologic mechanisms in the pathogenesis of rheumatoid arthritis. J Clin Rheumatol. 2005;11:S39–44.

    PubMed  Google Scholar 

  44. Mattar M, Jandali B, Malemud CJ, et al. Atherosclerosis and rheumatic diseases. Rheumatology (Sunnyvale). 2015;5:147.

    Google Scholar 

  45. Nowell MA, Richards PJ, Fielding CA. Regulation of pre-B cell colony enhancing factor by STAT3-interleukin-6 trans-signaling. Implications in the pathogenesis of rheumatoid arthritis. Arthritis Rheum. 2006;54:2084–95.

    CAS  PubMed  Google Scholar 

  46. Malemud CJ. Suppression of pro-inflammatory cytokines via targeting of STAT-responsive genes. In: El-Shemy H, editor. Drug discovery. Rijeka: InTech Publishing; 2013. p. 373–411.

    Google Scholar 

  47. Kimura A, Naka T, Kishimoto T. IL-6 dependent and –independent pathways in the development of interleukin-17-producing T helper cells. Proc Natl Acad Sci U S A. 2007;104:12099–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nishihara M, Ogura H, Ueda N, Tsuruoka M, Kitabayashi C, Tsuji F, et al. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int Immunol. 2007;19:695–702.

    CAS  PubMed  Google Scholar 

  49. Ahmad R, Malemud CJ, Askari AD. Treatment of SLE and secondary Sjögren’s syndrome with belimumab. J Immuno Biol. 2016;1:3.

    Google Scholar 

  50. Taherian E, Rao A, Malemud CJ, Askari AD. The biological and clinical activity of anti-malarial drugs in autoimmune disorders. Curr Rheumatol Rev. 2013;9:45–62.

    CAS  PubMed  Google Scholar 

  51. Ramanujam M, Davidson A. BAFF blockade for systemic lupus erythematosus: will the promise be fulfilled? Immunol Rev. 2008;223:156–74.

    CAS  PubMed  Google Scholar 

  52. Navarra SV, Gusmán RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled phase 3 trial. Lancet. 2011;377:721–31.

    CAS  PubMed  Google Scholar 

  53. Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzová D, et al. A phase III, randomized placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with system lupus erythematosus. Arthritis Rheum. 2011;63:3918–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stohl W, Hiepe F, Latinis KM, et al. Belimumab reduces autoantibodies, normalizes low complement and reduces select B-cell populations in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;64:2328–37.

    Google Scholar 

  55. Frieri M, Heuser W, Bliss J. Efficacy of novel monoclonal antibody belimumab in the treatment of lupus nephritis. J Pharmacol Pharmacother. 2015;6:71–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Malemud CJ, Gillespie HJ. The role of apoptosis in arthritis. Curr Rheumatol Rev. 2005;1:131–42.

    CAS  Google Scholar 

  57. Andrade F, Casciloa-Rosen L, Rosen L. Apoptosis in systemic lupus erythematosus. Clinical implications. Rheum Dis Clin N Am. 2000;26:215–27.

    CAS  Google Scholar 

  58. Kaplan MJ, Lewis EE, Shelden EA, Somers E, Pavlic R, McCune WJ, et al. The apoptotic ligands TRAIL, TWEAK and Fas ligand mediate monocyte death induced by autologous lupus T cells. J Immunol. 2002;169:6020–9.

    CAS  PubMed  Google Scholar 

  59. de la Varga Martinez R, Rodriguez-Bayona B, Aῆez GA, et al. Clinical relevance of circulating anti- ENA and anti-dsDNA secreting cells from SLE patients and their dependence on STAT-3 activation. Eur J Immunol. 2017;47:1211–9.

    PubMed  Google Scholar 

  60. Wang L, Tassiulas I, Park-Min KH, Reid AC, Gil-Henn H, Schlessinger J, et al. ‘Tuning’ of type I interferon-induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages. Nat Immunol. 2008;9:186–93.

    CAS  PubMed  Google Scholar 

  61. Tagoe C, Putterman C. JAK2 inhibition in systemic lupus erythematosus. Immunotherapy. 2012;4:369–72.

    CAS  PubMed  Google Scholar 

  62. Lu LD, Stump KL, Wallace NH, Dobrzanski P, Serdikoff C, Gingrich DE, et al. Depletion of autoreactive plasma cells and treatment of lupus nephritis in mice using CEP-33779, a novel, orally active, selective inhibitor of JAK2. J Immunol. 2011;187:3840–53.

    CAS  PubMed  Google Scholar 

  63. Wang S, Yang N, Zhang L, Huang B, Tan H, Liang Y, et al. Jak/STAT signaling is involved in the inflammatory infiltration of the kidneys in MRL/lpr mice. Lupus. 2010;19:1171–80.

    PubMed  Google Scholar 

  64. Azevedo A, Torres T. Tofacitinib: a new oral therapy for psoriasis. Clin Drug Investig. 2018;38:101–12.

    CAS  PubMed  Google Scholar 

  65. Hald A, Andrés RM, Salskov-Iversen ML, Kjellerup RB, Iversen L, Johansen C. STAT1 expression and activation is increased in lesional psoriatic skin. Br J Dermatol. 2013;168:302–10.

    CAS  PubMed  Google Scholar 

  66. Andrés RM, Hald A, Johansen C, Kragballe K, Iversen L. Studies of Jak/STAT3 expression and signalling in psoriasis identifies STAT3-Ser727 phosphorylation as a modulator of transcriptional activity. Exp Dermatol. 2013;22:323–8.

    PubMed  Google Scholar 

  67. Johansen C, Rittig AH, Mose M, Bertelsen T, Weimar I, Nielsen J, et al. STAT2 is involved in the pathogenesis of psoriasis by promoting CXCL11 and CCL5 production by keratinocytes. PLoS One. 2017;12:e0176994.

    PubMed  PubMed Central  Google Scholar 

  68. Di Lernia V, Bardazzi F. Profile of tofacitinib citrate and its potential in the treatment of moderate- to-severe chronic plaque psoriasis. Drug Des Devel Ther. 2016;10:533–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Korman AM, Hill D, Alikhan A et al. Oral tofacitinib for the treatment of adults with moderate to severe plaque psoriasis. Expert Rev Clin Pharmacol. 2016:1–15.

  70. Wcisło-Dziadecka D, Zbiciak-Nylec M, Brzeziňska-Wcisło L, et al. Newer treatments of psoriasis regarding IL-23 inhibitors, phosphodiesterase 4 inhibitors, and Janus kinase inhibitors. Dermatol Ther. 2017; https://doi.org/10.1111/dth.12555.

    Google Scholar 

  71. Vazquez ML, Kaila N, Strohbach JW, Trzupek JD, Brown MF, Flanagan ME, et al. Identification of N-{cis-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]cyclobutyl}propane-1-sulfonamide (PF-04965842): a selective JAK1 clinical candidate for the treatment of autoimmune diseases. J Med Chem. 2018;61:1130–52.

    CAS  PubMed  Google Scholar 

  72. Peeva E, Hodge MR, Kieras E, et al. Evaluation of a Janus kinase 1 inhibitor, PF-04965842, in healthy subjects: a phase 1, randomized, placebo-controlled, dose-escalation study. Br J Clin Pharmacol. 2018; https://doi.org/10.1111/bcp.13612.

    CAS  PubMed  Google Scholar 

  73. Meszaros EC, Dahoud W, Mesiano S, Malemud CJ. Blockade of recombinant human IL-6 with tocilizumab suppresses matrix metalloproteinase-9 production in the C28/I2 immortalized human chondrocyte cell line. Integr Mol Med. 2015;2:304–10.

    PubMed  PubMed Central  Google Scholar 

  74. Malemud CJ. Regulation of chondrocyte matrix metalloproteinase gene expression. In: Dhalla NS, Chakraborti S, editors. Role of proteases in cellular dysfunction. United Kingdom: Springer Science; 2013. p. 63–77.

    Google Scholar 

  75. Meszaros EC, Malemud CJ. Phosphorylation of STAT proteins by recombinant human IL-6 in immortalized human chondrocyte lines, T/C28a2 and C28/I2. J Inflamm Res. 2017;10:143–50.

    PubMed  PubMed Central  Google Scholar 

  76. Yang EJ, Sanchez IM, Beck K, Sekhon S, Wu JJ, Bhutani T. Guselkumab for the treatment of moderate-to-severe plaque psoriasis. Expert Rev Clin Pharmacol. 2018;11:333–44.

    CAS  PubMed  Google Scholar 

  77. Megna M, Balato A, Raimondo A, Balato N. Guselkumab for the treatment of psoriasis. Expert Opin Biol Ther. 2018;18:459–68.

    CAS  PubMed  Google Scholar 

  78. Camporeale A, Poli V. IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? Front Biosci (Landmark Ed). 2012;17:2306–26.

    Google Scholar 

  79. Lei X, Cai S, Chen Y, Cui J, Wang Y, Li Z, et al. Down-regulator of interleukin 7 receptor (IL-7R) contributes to central nervous system demyelination. Oncotarget. 2017;8:28395–407.

    PubMed  PubMed Central  Google Scholar 

  80. Sanchez-Muňoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol. 2008;14:4280–8.

    PubMed  PubMed Central  Google Scholar 

  81. West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, et al. Oncostatin M derives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med. 2017;23:579–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sartor RB. Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology. 1994;106:533–9.

    CAS  PubMed  Google Scholar 

  83. Schreiber S, Rosenstiel P, Hampe J, Nikolaus S, Groessner B, Schottelius A, et al. Activation of signal transducer and activator of transcription (STAT) 1 in human inflammatory bowel diseases. Gut. 2002;51:379–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mudter A, Dentelli P, Carlino A, et al. Activation pattern of signal transducers and activators of transcription (STAT) factors in inflammatory bowel diseases. Am J Gastroenterol. 2005;100:64–72.

    CAS  PubMed  Google Scholar 

  85. Mitsuyama K, Toyonaga A, Sasaki E, Ishida O, Ikeda H, Tsuruta O, et al. Soluble interleukin-6 receptors in inflammatory bowel disease: relationship to circulating interleukin-6. Gut. 1995;36:45–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Suzuki A, Hanada T, Mitsuyama K, Yoshida T, Kamizono S, Hoshino T, et al. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med. 2001;193:471–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Olivera P, Danese S, Peyrin-Biroulet L. JAK inhibition in inflammatory bowel disease. Expert Rev Clin Immunol. 2017;13:693–703.

    CAS  PubMed  Google Scholar 

  88. Zhao HM, Xu R, Huang XY, et al. Curcumin suppressed activation of dendritic cells via JAK/STAT/SOCS signal in mice with experimental colitis. Front Pharmacol. 2016;7:455.

    PubMed  PubMed Central  Google Scholar 

  89. Tetreault MP, Alrabaa R, McGeehan M, Katz JP. Krüppel-like factor 5 protects against murine colitis and activates JAK-STAT signaling in vivo. PLoS One. 2012;7:e38338.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nieminen JK, Niemi M, Sipponen T, Salo HM, Klemetti P, Färkkilä M, et al. Dendritic cells from Crohn’s disease patients show aberrant STAT1 and STAT3 signaling. PLoS One. 2013;8:e70738.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mahajan S, Gollob JA, Ritz J, Frank DA. CD2 stimulation leads to delayed and prolonged activation of STAT1 in T cells but not NK cells. Exp Hematol. 2001;29:209–20.

    CAS  PubMed  Google Scholar 

  92. Boysen P, Olsen I, Berg I, Kulberg S, Johansen GM, Storset AK. Bovine CD2-/NKp46+ cells are fully functional natural killer cells with a high activation status. BMC Immunol. 2006;7:10.

    PubMed  PubMed Central  Google Scholar 

  93. Sasada T, Yang H, Reinherz EL. CD2 facilitates differentiation of CD4 Th cells without affecting Th1/Th2 polarization. J Immunol. 2002;168:1113–22.

    CAS  PubMed  Google Scholar 

  94. Gonsky R, Deem RL, Bream J, Young HA, Targan SR. Enhancer role of STAT5 in CD2 activation of IFN-γ expression. J Immunol. 2004;173:6241–7.

    CAS  PubMed  Google Scholar 

  95. Gonsky R, Deem RL, Young HA, et al. CD2 mediates activation of IFN-γ intronic STAT binding region in mucosal T cells. Eur J Immunol. 2003;33:1152–62.

    CAS  PubMed  Google Scholar 

  96. Alkim C, Balci M, Alkim H, Dağli U, Parlak E, Tezel A, et al. The importance of peripheral immune cells in inflammatory bowel disease. Turk J Gastroenterol. 2007;18:82–8.

    PubMed  Google Scholar 

  97. Khalili A, Ebrahimpour S, Maleki I, et al. CD4+CD25+CD127lowFoxP3+ regulatory T cells in Crohn’s disease. Rom J Intern Med. 2018; https://doi.org/10.2478/rjm-2018-0006.

  98. van Vollenhoven RF, Fleischmann R, Cohen S, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. New Engl J Med. 2012;367:509–19.

    Google Scholar 

  99. Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367:495–507.

    CAS  PubMed  Google Scholar 

  100. Wollenhaupt J, Silverfield J, Lee EB, Curtis JR, Wood SP, Soma K, et al. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J Rheumatol. 2014;41:837–52.

    CAS  PubMed  Google Scholar 

  101. Fleischmann R, Mysler E, Hall S, Kivitz AJ, Moots RJ, Luo Z, et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORALStrategy): a phase 3b/4 double-blind, head-to-head, randomised controlled trial. Lancet. 2017;390:457–68.

    CAS  PubMed  Google Scholar 

  102. Kremer JM, Schiff M, Muram M, et al. Response to baricitinib therapy in patients with rheumatoid arthritis with inadequate response to csDMARDs as a function of baseline characteristics. RMD Open. 2018;4:e000581.

    PubMed  PubMed Central  Google Scholar 

  103. Gladman D, Rigby W, Azevedo VF, Behrens F, Blanco R, Kaszuba A, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377:1525–36.

    CAS  PubMed  Google Scholar 

  104. Mease P, Hall S, FitzGerald O, van der Heijde D, Merola JF, Avila-Zapata F, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377:1537–50.

    CAS  PubMed  Google Scholar 

  105. Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C, Rousell S, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367:616–24.

    CAS  PubMed  Google Scholar 

  106. Sandborn WJ, Su C, Sands BE, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2017;376:1723–36.

    CAS  PubMed  Google Scholar 

  107. Panés J, Sandborn WJ, Schreiber S, Sands BE, Vermeire S, D'Haens G, et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: results of two phase IIb randomised placebo-controlled trials. Gut. 2017;66:1049–59.

    PubMed  PubMed Central  Google Scholar 

  108. Thomas S, Fisher KH, Snowden JA, Danson SJ, Brown S, Zeidler MP. Methotrexate is a JAK/STAT inhibitor. PLoS One. 2015;10:e0130078.

    PubMed  PubMed Central  Google Scholar 

  109. Goodnow CC. Multistep pathogenesis of autoimmune disease. Cell. 2007;130:25–35.

    CAS  PubMed  Google Scholar 

  110. Raychaudhuri SK, Raychaudhuri SP. Janus kinase/signal transducer and activator of transcription pathways in spondyloarthritis. Curr Opin Rheumatol. 2017;29:311–6.

    CAS  PubMed  Google Scholar 

  111. Muraro D, Simmons A. An integrative analysis of gene expression and molecular interaction data to identify dys-regulated sub-networks in inflammatory bowel disease. BMC Bioinformatics. 2016;17:42.

    PubMed  PubMed Central  Google Scholar 

  112. Zhang Q, Pulheti P, Zhou Q, et al. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev. 2008;19:347–56.

    PubMed  PubMed Central  Google Scholar 

  113. Ferretti E, Corcione A, Pistoia V. The IL-31/IL-31 receptor axis: general features and role in tumor microenvironment. J Leukoc Biol. 2017;102:711–7.

    CAS  PubMed  Google Scholar 

  114. Hermanns HM. Oncostatin M and interleukin-31. Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev. 2015;26:545–58.

    CAS  PubMed  Google Scholar 

  115. Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev. 2008;19:347–56.

    PubMed  PubMed Central  Google Scholar 

  116. Cornelissen C, Lüscher-Firzlaff J, Baron JM, Lüscher B. Signaling by IL-31 and functional consequences. Eur J Cell Biol. 2012;91:552–66.

    CAS  PubMed  Google Scholar 

  117. Malemud CJ. PI3K/Akt/PTEN/mTOR signaling: a fruitful target for inducing cell death in rheumatoid arthritis? Future Med Chem. 2015;7:1137–47.

    CAS  PubMed  Google Scholar 

  118. Malemud CJ, Sun Y, Pearlman E, et al. Monosodium urate and tumor necrosis factor-α increase apoptosis in human chondrocyte cultures. Rheumatology (Sunnyvale). 2012;2:113.

    Google Scholar 

Download references

Acknowledgements

The experimental results reported in Meszaros and Malemud (references 73 and 75) and Malemud et al. (references 13 and 118) were supported, in part, by contracts between Takeda Pharmaceuticals of North America and CWRU, and, Genentech/Roche and CWRU, the Visual Sciences Research Center funded by the National Eye Institute (P30-EY11373) and the National Institute of Childhood & Human Development (R01-HD061819; PI: Sam Mesiano, PhD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Malemud.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Kinase Inhibitor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malemud, C.J. Defective JAK-STAT Pathway Signaling Contributes to Autoimmune Diseases. Curr Pharmacol Rep 4, 358–366 (2018). https://doi.org/10.1007/s40495-018-0151-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-018-0151-4

Keywords

Navigation