Skip to main content

Advertisement

Log in

The Role of Sea Cucumber Active Compound and Its Derivative as an Anti-Cancer Agent

  • Cancer Chemoprevention (R Agarwal, K El Bayoumy and S Yu, Section Editors)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article gives a brief overview on the role of sea cucumber active compounds in cancer cell killing that may be developed into a potent anti-cancer agent.

Recent Findings

The rapid development of knowledge and technology in molecular biology has as yet not succeeded in identifying a safe drug for cancer therapy. The central issue in cancer treatment is the side effects of the cancer medicines and the cancer cell resistance that develop against the drugs. An alternative medication is the use of natural materials as a substance for cancer treatment with fewer side effects. Sea cucumber is an edible marine animal that has been widely used for food and traditional medicine and has not been reported as toxic for humans. Further, we summarized the latest information on the sea cucumber research, its active compound, and its role in the cancer cell killing. The sea cucumber contains active compounds that can potentially be used as an anti-cancer agent that is safe for humans.

Summary

The sea cucumber contains active substances which are toxic to various cancer cells and can therefore function as an anti-cancer agent. Some studies have concluded that the active compounds display anti-metastasis and anti-angiogenesis activity. Moreover, the compounds also work to inhibit cell division and induce apoptosis both in vitro and in vivo. The particular role of sea cucumber as a potential anti-cancer agent has also been described in this review. Indeed, this article presents the latest information and concept of the cancer-killing mechanism of sea cucumber that warrants a significant further investigation into cancer mechanisms to identify a safe drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Zhou H-Y, Dong F-Q, Du X-L, Zhou Z-K, Huo H-R, Wang W-H, et al. Antitumor activities of biscoumarin and dihydropyran derivatives. Bioorg Med Chem Lett. 2016;26(16):3876–80. https://doi.org/10.1016/j.bmcl.2016.07.023.

    Article  CAS  PubMed  Google Scholar 

  2. Correia-da-Silva M, Sousa E, Pinto MMM, Kijjoa A. Anticancer and cancer preventive compounds from edible marine organisms. Semin Cancer Biol [Internet]. 2017; Available from: http://www.sciencedirect.com/science/article/pii/S1044579X17300846.

  3. Tong Y, Zhang X, Tian F, Yi Y, Xu Q, Li L, et al. Philinopside a, a novel marine-derived compound possessing dual anti-angiogenic and anti-tumor effects. Int J Cancer. 2005;114(6):843–53. https://doi.org/10.1002/ijc.20804.

    Article  CAS  PubMed  Google Scholar 

  4. Careaga VP, Bueno C, Muniain C, Alché L, Maier MS. Antiproliferative, cytotoxic and hemolytic activities of a triterpene glycoside from Psolus patagonicus and its desulfated analog. Chemotherapy. 2009;55(1):60–8. https://doi.org/10.1159/000180340.

    Article  CAS  PubMed  Google Scholar 

  5. Nguyen BCQ, Yoshimura K, Kumazawa S, Tawata S, Maruta H. Frondoside A from sea cucumber and nymphaeols from Okinawa propolis: natural anti-cancer agents that selectively inhibit PAK1 in vitro. Drug Discov Ther. 2017;11(2):110–4. https://doi.org/10.5582/ddt.2017.01011.

    Article  PubMed  Google Scholar 

  6. Dyshlovoy SA, Madanchi R, Hauschild J, Otte K, Alsdorf WH, Schumacher U, et al. The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells. BMC Cancer. 2017;17(1):93. https://doi.org/10.1186/s12885-017-3085-z.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aminin DL, Menchinskaya ES, Pislyagin EA, Silchenko AS, Avilov SA, Kalinin VI. Sea cucumber triterpene glycosides as anticancer agents. Stud Nat Prod Chem. 2016;49:55–105. https://doi.org/10.1016/B978-0-444-63601-0.00002-8.

    Article  Google Scholar 

  8. Yu S, Ye X, Huang H, Peng R, Su Z, Lian X-Y, et al. Bioactive sulfated saponins from sea cucumber Holothuria moebii. Planta Med. 2015;81(2):152–9. https://doi.org/10.1055/s-0034-1383404.

    Article  CAS  PubMed  Google Scholar 

  9. Silchenko AS, Kalinovsky AI, Avilov SA, Kalinin VI, Andrijaschenko PV, Dmitrenok PS, et al. Nine new triterpene glycosides, magnumosides A1–A4, B1, B2, C1, C2 and C4, from the Vietnamese Sea cucumber Neothyonidium (=Massinium) magnum: structures and activities against tumor cells independently and in synergy with radioactive irradiation. Mar. Drugs. 2017;15(8):256. https://doi.org/10.3390/md15080256.

    Article  PubMed Central  Google Scholar 

  10. Zhang J-J, Zhu K-Q. A novel antitumor compound nobiliside D isolated from sea cucumber (Holothuria nobilis Selenka). Exp Ther Med. 2017;14(2):1653–8. https://doi.org/10.3892/etm.2017.4656.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Al Shemaili J, Mensah-Brown E, Parekh K, Thomas SA, Attoub S, Hellman B, et al. Frondoside A enhances the antiproliferative effects of gemcitabine in pancreatic cancer. Eur J Cancer Oxf Engl. 2014;50:1391–8.

    Article  Google Scholar 

  12. Yue Z, Wang A, Zhu Z, Tao L, Li Y, Zhou L, et al. Holothurian glycosaminoglycan inhibits metastasis via inhibition of P-selectin in B16F10 melanoma cells. Mol Cell Biochem. 2015;410(1-2):143–54. https://doi.org/10.1007/s11010-015-2546-4.

    Article  CAS  PubMed  Google Scholar 

  13. Cuong NX, Vien LT, Hoang L, Hanh TTH, Thao DT, Thanh NV, et al. Cytotoxic triterpene diglycosides from the sea cucumber Stichopus horrens. Bioorg Med Chem Lett. 2017;27(13):2939–42. https://doi.org/10.1016/j.bmcl.2017.05.003.

    Article  PubMed  Google Scholar 

  14. Wu J, Yi Y-H, Tang H-F, Wu H-M, Zhou Z-R. Hillasides A and B, Two new cytotoxic triterpene glycosides from the sea cucumber Holothuria hilla lesson. J Asian Nat Prod Res. 2007;9(7):609–15. https://doi.org/10.1080/10286020600882676.

    Article  CAS  PubMed  Google Scholar 

  15. Sugawara T, Zaima N, Yamamoto A, Sakai S, Noguchi R, Hirata T. Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells. Biosci Biotechnol Biochem. 2006;70(12):2906–12. https://doi.org/10.1271/bbb.60318.

    Article  CAS  PubMed  Google Scholar 

  16. Soltani M, Parivar K, Baharara J, Kerachian MA, Asili J. Hemolytic and cytotoxic properties of saponin purified from Holothuria leucospilota sea cucumber. Rep. Biochem Mol Biol. 2014;3:43–50.

    PubMed  PubMed Central  Google Scholar 

  17. Attoub S, Arafat K, Gélaude A, Al Sultan MA, Bracke M, Collin P, et al. Frondoside A suppressive effects on lung cancer survival, tumor growth, angiogenesis, invasion, and metastasis. PLoS One. 2013;8(1):e53087. https://doi.org/10.1371/journal.pone.0053087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Yi Y. Studies[ on antitumor activities of triterpene glycoside colochiroside A from sea cucumber Colochirus ]anceps. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J Chin Mater Medica. 2011;36:504–7.

    CAS  Google Scholar 

  19. Baharara J, Amini E, Afzali M, Nikdel N, Mostafapour A, Kerachian MA. Apoptosis inducing capacity of Holothuria arenicola in CT26 colon carcinoma cells in vitro and in vivo. Iran J Basic Med Sci. 2016;19:358–65.

    PubMed  PubMed Central  Google Scholar 

  20. Omran NE, Khedr AM. Structure elucidation, protein profile and the antitumor effect of the biological active substance extracted from sea cucumber Holothuria polii. Toxicol Ind Health. 2015;31(1):1–8. https://doi.org/10.1177/0748233712466135.

    Article  CAS  PubMed  Google Scholar 

  21. Han H, Xu Q-Z, Tang H-F, Yi Y-H, Gong W. Cytotoxic holostane-type triterpene glycosides from the sea cucumber Pentacta quadrangularis. Planta Med. 2010;76(16):1900–4. https://doi.org/10.1055/s-0030-1249854.

    Article  CAS  PubMed  Google Scholar 

  22. Han H, Zhang W, Yi Y-H, Liu B-S, Pan M-X, Wang X-H. A novel sulfated holostane glycoside from sea cucumber Holothuria leucospilota. Chem Biodivers. 2010;7(7):1764–9. https://doi.org/10.1002/cbdv.200900094.

    Article  CAS  PubMed  Google Scholar 

  23. Yun S-H, Park E-S, Shin S-W, M-H J, Han J-Y, Jeong J-S, et al. By activating Fas/ceramide synthase 6/p38 kinase in lipid rafts, stichoposide D inhibits growth of leukemia xenografts. Oncotarget. 2015;6(29):27596–612. https://doi.org/10.18632/oncotarget.4820.

    PubMed  PubMed Central  Google Scholar 

  24. Zhao Q, Xue Y, Wang J, Li H, Long T, Li Z, et al. In vitro and in vivo anti-tumour activities of echinoside A and ds-echinoside A from Pearsonothuria graeffei. J Sci Food Agric. 2012;92(4):965–74. https://doi.org/10.1002/jsfa.4678.

    Article  CAS  PubMed  Google Scholar 

  25. Jia Z, Song Y, Tao S, Cong P, Wang X, Xue C, et al. Structure of sphingolipids from sea cucumber Cucumaria frondosa and structure-specific cytotoxicity against human HepG2 cells. Lipids. 2016;51(3):321–34. https://doi.org/10.1007/s11745-016-4128-y.

    Article  CAS  PubMed  Google Scholar 

  26. Aminin DL, Menchinskaya ES, Pisliagin EA, Silchenko AS, Avilov SA, Kalinin VI. Anticancer activity of sea cucumber triterpene glycosides. Mar Drugs. 2015;13(3):1202–23. https://doi.org/10.3390/md13031202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu X, Liu Y, Hao J, Zhao X, Lang Y, Fan F, et al. In vivo anti-cancer mechanism of low-molecular-weight fucosylated chondroitin sulfate (LFCS) from sea cucumber Cucumaria frondosa. Mol Basel Switz. 2016;21

  28. Shapiro GI, Harper JW. Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest. 1999;104(12):1645–53. https://doi.org/10.1172/JCI9054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Janakiram NB, Mohammed A, Bryant T, Lightfoot S, Collin PD, Steele VE, et al. Improved innate immune responses by Frondanol A5, a sea cucumber extract, prevent intestinal tumorigenesis. Cancer Prev Res Phila Pa. 2015;8(4):327–37. https://doi.org/10.1158/1940-6207.CAPR-14-0380.

    Article  Google Scholar 

  30. Menchinskaya ES, Pislyagin EA, Kovalchyk SN, Davydova VN, Silchenko AS, Avilov SA, et al. Antitumor activity of cucumarioside A2-2. Chemotherapy. 2013;59(3):181–91. https://doi.org/10.1159/000354156.

    Article  CAS  PubMed  Google Scholar 

  31. Tian F, Zhang X, Tong Y, Yi Y, Zhang S, Li L, et al. PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol Ther. 2005;4(8):874–82. https://doi.org/10.4161/cbt.4.8.1917.

    Article  CAS  PubMed  Google Scholar 

  32. Yun S-H, Park E-S, Shin S-W, Na Y-W, Han J-Y, Jeong J-S, et al. Stichoposide C induces apoptosis through the generation of ceramide in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18:5934–48.

    Article  CAS  Google Scholar 

  33. Assawasuparerk K, Vanichviriyakit R, Chotwiwatthanakun C, Nobsathian S, Rawangchue T, Wittayachumnankul B. Scabraside D extracted from Holothuria scabra induces apoptosis and inhibits growth of human cholangiocarcinoma xenografts in mice. Asian Pac J Cancer Prev APJCP. 2016;17(2):511–7. https://doi.org/10.7314/APJCP.2016.17.2.511.

    Article  PubMed  Google Scholar 

  34. Assawasuparerk K, Rawangchue T, Phonarknguen R. Scabraside D derived from sea cucumber induces apoptosis and inhibits metastasis via iNOS and STAT-3 expression in human cholangiocarcinoma xenografts. Asian Pac J Cancer Prev APJCP. 2016;17(4):2151–7. https://doi.org/10.7314/APJCP.2016.17.4.2151.

    Article  PubMed  Google Scholar 

  35. Zhao Q, Xue Y, Liu Z, Li H, Wang J, Li Z, et al. Differential effects of sulfated triterpene glycosides, holothurin A1, and 24-dehydroechinoside A, on antimetastasic activity via regulation of the MMP-9 signal pathway. J Food Sci. 2010;75(9):H280–8. https://doi.org/10.1111/j.1750-3841.2010.01837.x.

    Article  CAS  PubMed  Google Scholar 

  36. Qian W, Tao L, Wang Y, Zhang F, Li M, Huang S, et al. Downregulation of integrins in cancer cells and anti-platelet properties are involved in Holothurian glycosaminoglycan-mediated disruption of the interaction of cancer cells and platelets in hematogenous metastasis. J Vasc Res. 2015;52(3):197–209. https://doi.org/10.1159/000439220.

    Article  CAS  PubMed  Google Scholar 

  37. Pucci B, Kasten M, Giordano A. Cell cycle and apoptosis. Neoplasia N Y N. 2000;2(4):291–9. https://doi.org/10.1038/sj.neo.7900101.

    Article  CAS  Google Scholar 

  38. Qian B-Z. Inflammation fires up cancer metastasis. Semin Cancer Biol [Internet]. 2017; Available from:http://www.sciencedirect.com/science/article/pii/S1044579X17302109.

  39. Ye W. The complexity of translating anti-angiogenesis therapy from basic science to the clinic. Dev Cell. 2016;37(2):114–25. https://doi.org/10.1016/j.devcel.2016.03.015.

    Article  CAS  PubMed  Google Scholar 

  40. Sakthivel KM, Hariharan S. Regulatory players of DNA damage repair mechanisms: role in cancer chemoresistance. Biomed Pharmacother. 2017;93:1238–45. https://doi.org/10.1016/j.biopha.2017.07.035.

    Article  CAS  PubMed  Google Scholar 

  41. Heydari-Bafrooei E, Amini M, Saeednia S. Electrochemical detection of DNA damage induced by Bleomycin in the presence of metal ions. J Electroanal Chem [Internet]. Available from: http://www.sciencedirect.com/science/article/pii/S1572665717306537.

  42. Li M, Miao Z-H, Chen Z, Chen Q, Gui M, Lin L-P, et al. Echinoside A, a new marine-derived anticancer saponin, targets topoisomerase2alpha by unique interference with its DNA binding and catalytic cycle. Ann Oncol Off J Eur Soc Med Oncol. 2010;21:597–607.

    Article  CAS  Google Scholar 

  43. Kim EJ, Kim SY, Kim S-M, Lee M. A novel topoisomerase 2a inhibitor, cryptotanshinone, suppresses the growth of PC3 cells without apparent cytotoxicity. Toxicol Appl Pharmacol. 2017;330:84–92. https://doi.org/10.1016/j.taap.2017.07.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia for providing the fund under Postdoctoral Research Scheme in 2017 to finish this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teresa Liliana Wargasetia or Widodo.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cancer Chemoprevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wargasetia, T.L., Permana, S. & Widodo The Role of Sea Cucumber Active Compound and Its Derivative as an Anti-Cancer Agent. Curr Pharmacol Rep 4, 27–32 (2018). https://doi.org/10.1007/s40495-018-0121-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-018-0121-x

Keywords

Navigation