Skip to main content
Log in

Evaluation of the human blood entropy production: a new thermodynamic approach

  • Original Article
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

In this paper, we follow the thermodynamic theory with internal variables of Kluitenberg evaluating the entropy production of red blood cell in saline solution and whole blood, respectively, when they are subjected to an ultrasound wave. From a thermodynamic point of view, blood is an open system; so to fully represent the entropy variation as function of frequency perturbation we employ phenomenological coefficients which allow us to qualitatively discriminate among classes of phenomena which cannot be observed in any other way. Therefore, a correlation between these coefficients and quantities experimentally measurable allows to a deeper knowledge of biological phenomena.

Sommario

In questo lavoro, utilizzando la teoria termodinamica di Kluitenberg con variabili interne, viene valutata la produzione di entropia nel sangue intero e nei globuli rossi, quando questo viene perturbato con ultrasuoni in funzione della frequenza. Poiché da un punto di vista termodinamico, il sangue è un sistema aperto, determinare la variazione di entropia in funzione della frequenza è della massima importanza. A tale scopo vengono determinati i coefficienti fenomenologici da cui essa dipende, i quali, inoltre, permettono di discriminare qualitativamente classi di fenomeni che altrimenti non vengono considerate. Pertanto, una correlazione tra questi coefficienti e le quantità sperimentalmente misurabili permette di approfondire la conoscenza dei fenomeni biologici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NET:

Non-equilibrium thermodynamics

RBCs:

Red blood cells

WBCs:

White blood cells

MPs:

Micro-particles

References

  1. Kuiken GDC (1994) Thermodynamics of irreversible processes. Application to diffusion and rheology. Wiley, England

    Google Scholar 

  2. De Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover Publication, New York

    Google Scholar 

  3. Kluitenberg GA (1962) Thermodynamical theory of elasticity and plasticity. Physica 28:217

    Article  Google Scholar 

  4. Kluitenberg GA (1962) A note on the thermodynamics of Maxwell bodies, Kelvin bodies (Voigt bodies), and fluids. Physica 28:561

    Article  Google Scholar 

  5. Kluitenberg GA (1962) On rheology and thermodynamics of irreversible processes. Physica 28:1173

    Article  Google Scholar 

  6. Kluitenberg GA (1963) On the thermodynamics of viscosity and plasticity. Physica 29:633

    Article  CAS  Google Scholar 

  7. Kluitenberg GA (1968) A thermodynamic derivation of the stress–strain relations for Burgers media and related substances. Physica 38:513–548

    Article  Google Scholar 

  8. Farsaci F, Ciancio V, Rogolino P (2010) Mechanical model for relaxation phenomena in viscoanelastic media of order one. Physica B 405:3208

    Article  CAS  Google Scholar 

  9. Farsaci F, Rogolino P (2012) An alternative dielectric model for low and high frequencies: a non-equilibrium thermodynamic approach. J Non-Equilib Thermodyn 37(1):27

    Article  CAS  Google Scholar 

  10. Farsaci F, Tellone E, Cavallaro M, Russo A, Ficarra S (2013) Low frequency dielectric characteristics of human blood: a non-equilibrium thermodynamic approach. J Mol Liq 188:113

    Article  CAS  Google Scholar 

  11. Farsaci F, Ficarra S, Russo A, Galtieri A, Tellone E (2015) Dielectric properties of human diabetic blood: thermodynamic characterization and new prospective for alternative diagnostic techniques. J Adv Dielectr 5:3

    Article  Google Scholar 

  12. Farsaci F, Russo A, Ficarra S, Tellone E (2015) Dielectric properties of human normal and malignant liver tissue: a non-equilibrium thermodynamics approach. Open Access Libr J 2:e1395

    Google Scholar 

  13. Ciancio A, Ciancio V, Farsaci F (2007) Wave propagation in media obeying a thermoviscoanelastic model. UPB Sci Bull Ser A 69(4)

  14. Ciancio V, Farsaci F, Rogolino P (2009) Phenomenological approach on wave propagation in dielectric media with two relaxation times. Physica B 404:320

    Article  CAS  Google Scholar 

  15. Ciancio V, Farsaci F, Rogolino P (2009) Mathematical approach to the relaxation phenomena. APPS Appl Sci 11:48–59

    Google Scholar 

  16. Ciancio V, Farsaci F, Rogolino P (2010) On a thermodynamical model for dielectric relaxation phenomena. Physica B 405:174

    Article  Google Scholar 

  17. Treeby BE, Zhang EZ, Thomas AS, Cox BT (2011) Measurement of the ultrasound attenuation and dispersion in whole human blood and its components from 0–70 MHz. Ultrasound Med Biol 37(2):289–300

    Article  PubMed  Google Scholar 

  18. Edmonds PD (1962) Ultrasound absorption of haemoglobin solution. Biochim Biophys Acta 63:216–219

    Article  CAS  Google Scholar 

  19. Ciancio V, Farsaci F, Di Marco G (2007) A method for experimental evaluation of phenomenological coefficients in media with dielectric relaxation. Physica B 387:130

    Article  CAS  Google Scholar 

  20. Dai H, Feng R (1988) Ultrasonic attenuation suspensions in red blood cell. Ultrasonics 26(3):168–170

    Article  CAS  PubMed  Google Scholar 

  21. Edmond PD, Bauld TJ III, Dyro JF, Hussey M (1970) Ultrasonic absorption of aqueous haemoglobin solutions. Biochim Biophys Acta 200:174–177

    Article  Google Scholar 

  22. Filho MMC (2004) The ultrasonic attenuation coefficient for human blood plasma in the frequency range of 7–90 MHz. IEEE Int Ultrason Symp 3:2073–2077

    Google Scholar 

  23. Ciancio V, Farsaci F, Bartolotta A (2006) Phenomenological and state coefficients in viscoelastic medium order one (with memory). Comput Sci Its Appl ICCSA 3980:821–827. ISSN: 0302-9743, ISBN: 978-3-540-34070-6

  24. Ciancio V, Bartolotta A, Farsaci F (2007) Experimental confirmations on a thermodynamical theory for viscoanelastic media with memory. Physica B 394(1):8–13

    Article  CAS  Google Scholar 

  25. Ciancio V, Ciancio A, Farsaci F (2008) On general properties of phenomenological and state coefficients for isotropic viscoanelastic media. Physica B 403:18

    Article  Google Scholar 

  26. De Rosa MC, Sanna MT, Messana I, Castagnola M, Galtieri A, Tellone E, Scatena R, Botta B, Botta M, Giardina B (1998) Glycated human hemoglobin HbA1c: functional characteristics and molecular modeling studies. Biophys Chem 72:323

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tellone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farsaci, F., Tellone, E., Galtieri, A. et al. Evaluation of the human blood entropy production: a new thermodynamic approach. J Ultrasound 19, 265–273 (2016). https://doi.org/10.1007/s40477-016-0210-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-016-0210-9

Keywords

Navigation