Skip to main content

Advertisement

Log in

Glutamatergic Agents for the Treatment of Cocaine Use Disorder

  • Addictions (M Potenza and E DeVito, Section Editors)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Disruptions in glutamate hemostasis have been implicated in cocaine use disorder (CUD). This manuscript reviews novel agents that influence glutamate neurotransmission with respect to their potential for the treatment of CUD. Among glutamatergic receptors/transporters, we focused on NMDA and AMPA/kainate receptors, mGluR1/5, mGluR2/3, and xCT and GLT-1 transporters.

Recent Findings

This review suggests that beta-lactam antibiotics, propentofylline, metabotropic glutamate-receptor-5 antagonists, and ketamine may alter neuroplastic processes related to chronic cocaine use. Among novel agents targeting glutamatergic systems, arguably the agent with the most preclinical and clinical support is ketamine, although the route of administration and potential for misuse are limitations. The beta-lactam antibiotics clavulanic acid and ceftriaxone have significant preclinical support, but ceftriaxone has limitations relating to the route of administration and safety profile. Among other agents with promising preclinical data, there exists ongoing (e.g., mavoglurant and clavulanic acid) or completed (e.g., clavulanic acid) clinical trials.

Summary

Given the potential of targeting glutamatergic systems, further study is needed of these agents. Gaps and limitations when it comes to translation of preclinical work to clinical settings are being reduced and addressed with promising candidates such as ketamine, newer beta-lactam agents with better safety profiles, and ongoing trials with agents targeting metabotropic glutamate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Niedzielska-Andres E, Pomierny-Chamioło L, Andres M, Walczak M, Knackstedt LA, Filip M, et al. Cocaine use disorder: a look at metabotropic glutamate receptors and glutamate transporters. Pharmacol Ther. 2021;221:107797. https://doi.org/10.1016/j.pharmthera.2020.107797. Provides a comprehensive review of structures and proteins important on glutamatergic hypotheses of cocaine use disorder.

    Article  PubMed  CAS  Google Scholar 

  2. Manhapra A, Chakraborty A, Arias AJ. Topiramate pharmacotherapy for alcohol use disorder and other addictions: a narrative review. J Addict Med. 2019;13(1):7–22. https://doi.org/10.1097/ADM.0000000000000443.

    Article  PubMed  Google Scholar 

  3. Montemitro C, Angebrandt A, Wang T-Y, Pettorruso M, Abulseoud OA. Mechanistic insights into the efficacy of memantine in treating certain drug addictions. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110409. https://doi.org/10.1016/j.pnpbp.2021.110409.

    Article  PubMed  CAS  Google Scholar 

  4. Murillo-Rodriguez E, Barciela Veras A, Barbosa Rocha N, Budde H, Machado S. An overview of the clinical uses, pharmacology, and safety of modafinil. ACS Chem Neurosci. 2018;9(2):151–8. https://doi.org/10.1021/acschemneuro.7b00374.

    Article  PubMed  CAS  Google Scholar 

  5. Tomko RL, Jones JL, Gilmore AK, Brady KT, Back SE, Gray KM. N-acetylcysteine: a potential treatment for substance use disorders. Curr Psychiatr. 2018;17(6):30–6 41-2, 55.

    PubMed  PubMed Central  Google Scholar 

  6. Collins ED, Vosberg SK, Ward AS, Haney M, Foltin RW. The effects of acute pretreatment with high-dose memantine on the cardiovascular and behavioral effects of cocaine in humans. Exp Clin Psychopharmacol. 2007;15(3):228–37. https://doi.org/10.1037/1064-1297.15.3.228.

    Article  PubMed  CAS  Google Scholar 

  7. Collins ED, Vosburg SK, Ward AS, Haney M, Foltin RW. Memantine increases cardiovascular but not behavioral effects of cocaine in methadone-maintained humans. Pharmacol Biochem Behav. 2006;83(1):47–55. https://doi.org/10.1016/j.pbb.2005.12.003.

    Article  PubMed  CAS  Google Scholar 

  8. Vosburg SK, Hart CL, Haney M, Foltin RW. An evaluation of the reinforcing effects of memantine in cocaine-dependent humans. Drug Alcohol Depend. 2005;79(2):257–60. https://doi.org/10.1016/j.drugalcdep.2005.01.020.

    Article  PubMed  CAS  Google Scholar 

  9. Smaga I, Frankowska M, Filip M. N-acetylcysteine in substance use disorder: a lesson from preclinical and clinical research. Pharmacol Rep. 2021;73(5):1205–19. https://doi.org/10.1007/s43440-021-00283-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sangroula D, Motiwala F, Wagle B, Shah VC, Hagi K, Lippmann S. Modafinil treatment of cocaine dependence: a systematic review and meta-analysis. Subst Use Misuse. 2017;52(10):1292–306. https://doi.org/10.1080/10826084.2016.1276597.

    Article  PubMed  Google Scholar 

  11. •• Rush CR, Stoops WW, Lile JA, Alcorn JL 3rd, Bolin BL, Reynolds AR, et al. Topiramate-phentermine combinations reduce cocaine self-administration in humans. Drug Alcohol Depend. 2021;218: 108413. https://doi.org/10.1016/j.drugalcdep.2020.108413. Provides significant evidence for the potential clinical efficacy of AMPA-receptor antagonist agents in CUD treatment.

    Article  PubMed  CAS  Google Scholar 

  12. Levin FR, Mariani JJ, Pavlicova M, Choi CJ, Mahony AL, Brooks DJ, et al. Extended release mixed amphetamine salts and topiramate for cocaine dependence: a randomized clinical replication trial with frequent users. Drug Alcohol Depend. 2020;206:107700. https://doi.org/10.1016/j.drugalcdep.2019.107700.

    Article  PubMed  CAS  Google Scholar 

  13. Chan B, Kondo K, Freeman M, Ayers C, Montgomery J, Kansagara D. Pharmacotherapy for cocaine use disorder-a systematic review and meta-analysis. J Gen Intern Med. 2019;34(12):2858–73. https://doi.org/10.1007/s11606-019-05074-8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Baldaçara L, Cogo-Moreira H, Parreira BL, Diniz TA, Milhomem JJ, Fernandes CC, et al. Efficacy of topiramate in the treatment of crack cocaine dependence: a double-blind, randomized, placebo-controlled trial. J Clin Psychiatry. 2016;77(3):398–406. https://doi.org/10.4088/JCP.14m09377.

    Article  PubMed  Google Scholar 

  15. Pagano J, Giona F, Beretta S, Verpelli C, Sala C. N-methyl-d-aspartate receptor function in neuronal and synaptic development and signaling. Curr Opin Pharmacol. 2021;56:93–101. https://doi.org/10.1016/j.coph.2020.12.006.

    Article  PubMed  CAS  Google Scholar 

  16. Shi X, von Weltin E, Barr JL, Unterwald EM. Activation of GSK3β induced by recall of cocaine reward memories is dependent on GluN2A/B NMDA receptor signaling. J Neurochem. 2019;151(1):91–102. https://doi.org/10.1111/jnc.14842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Smaga I, Sanak M, Filip M. Cocaine-induced changes in the expression of NMDA receptor subunits. Curr Neuropharmacol. 2019;17(11):1039–55. https://doi.org/10.2174/1570159X17666190617101726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. • Moulin TC, Schiöth HB. Excitability, synaptic balance, and addiction: the homeostatic dynamics of ionotropic glutamatergic receptors in VTA after cocaine exposure. Behav Brain Funct. 2020;16(1):6. https://doi.org/10.1186/s12993-020-00168-4. Describes neural mechanisms by which particular types of AMPA receptor modulation may result in enhanced cocaine abstinence.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim J, Farchione T, Potter A, Chen Q, Temple R. Esketamine for treatment-resistant depression - first FDA-approved antidepressant in a new class. N Engl J Med. 2019;381(1):1–4. https://doi.org/10.1056/NEJMp1903305.

    Article  PubMed  Google Scholar 

  20. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007;27(43):11496–500. https://doi.org/10.1523/JNEUROSCI.2213-07.2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63(4):349–52. https://doi.org/10.1016/j.biopsych.2007.05.028.

    Article  PubMed  CAS  Google Scholar 

  22. Abdallah CG, Ahn KH, Averill LA, Nemati S, Averill CL, Fouda S, et al. A robust and reproducible connectome fingerprint of ketamine is highly associated with the connectomic signature of antidepressants. Neuropsychopharmacology. 2021;46(2):478–85. https://doi.org/10.1038/s41386-020-00864-9.

    Article  PubMed  CAS  Google Scholar 

  23. Iadarola ND, Niciu MJ, Richards EM, Vande Voort JL, Ballard ED, Lundin NB, et al. Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther Adv Chronic Dis. 2015;6(3):97–114. https://doi.org/10.1177/2040622315579059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Salvadore G, Cornwell BR, Colon-Rosario V, Coppola R, Grillon C, Zarate CA Jr, et al. Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological biomarker that predicts rapid antidepressant response to ketamine. Biol Psychiatry. 2009;65(4):289–95. https://doi.org/10.1016/j.biopsych.2008.08.014.

    Article  PubMed  CAS  Google Scholar 

  25. Scheidegger M, Walter M, Lehmann M, Metzger C, Grimm S, Boeker H, et al. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One. 2012;7(9): e44799. https://doi.org/10.1371/journal.pone.0044799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Athira KV, Mohan AS, Chakravarty S. Rapid acting antidepressants in the mTOR pathway: current evidence. Brain Res Bull. 2020;163:170–7. https://doi.org/10.1016/j.brainresbull.2020.07.022.

    Article  CAS  Google Scholar 

  27. Angarita GA, Worhunsky PD, Naganawa M, Toyonaga T, Nabulsi NB, Li CR, et al. Lower prefrontal cortical synaptic vesicle binding in cocaine use disorder: an exploratory (11) C-UCB-J positron emission tomography study in humans. Addict Biol. 2022;27(2): e13123. https://doi.org/10.1111/adb.13123.

    Article  PubMed  CAS  Google Scholar 

  28. Holmes SE, Finnema SJ, Naganawa M, DellaGioia N, Holden D, Fowles K, et al. Imaging the effect of ketamine on synaptic density (SV2A) in the living brain. Mol Psychiatry. 2022. https://doi.org/10.1038/s41380-022-01465-2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. • Maltbie EA, Gopinath KS, Howell LL. Effects of ketamine treatment on cocaine-induced reinstatement and disruption of functional connectivity in unanesthetized rhesus monkeys. Psychopharmacology. 2019;236(7):2105–18. https://doi.org/10.1007/s00213-019-05204-4. Suggests that AMPA agonism can result in the reduction of cocaine-reinforced behaviors, contrary to previous findings which point more toward AMPA antagonists for the treatment of CUD. Such contradictory results signal the need to better determine differential AMPA expression with regard to particular brain regions and relevant temporal patterns.

    Article  PubMed  CAS  Google Scholar 

  30. Zanettini C, Wilkinson DS, Katz JL. Behavioral economic analysis of the effects of N-substituted benztropine analogs on cocaine self-administration in rats. Psychopharmacology. 2018;235(1):47–58. https://doi.org/10.1007/s00213-017-4739-x.

    Article  PubMed  CAS  Google Scholar 

  31. Dakwar E, Levin F, Foltin RW, Nunes EV, Hart CL. The effects of subanesthetic ketamine infusions on motivation to quit and cue-induced craving in cocaine-dependent research volunteers. Biol Psychiatry. 2014;76(1):40–6. https://doi.org/10.1016/j.biopsych.2013.08.009.

    Article  PubMed  CAS  Google Scholar 

  32. Dakwar E, Hart CL, Levin FR, Nunes EV, Foltin RW. Cocaine self-administration disrupted by the N-methyl-D-aspartate receptor antagonist ketamine: a randomized, crossover trial. Mol Psychiatry. 2017;22(1):76–81. https://doi.org/10.1038/mp.2016.39.

    Article  PubMed  CAS  Google Scholar 

  33. • Dakwar E, Nunes EV, Hart CL, Foltin RW, Mathew SJ, Carpenter KM, et al. A single ketamine infusion combined with mindfulness-based behavioral modification to treat cocaine dependence: a randomized clinical trial. Am J Psychiatry. 2019;176(11):923–30. https://doi.org/10.1176/appi.ajp.2019.18101123. Largest clinical trial on ketamine for cocaine use disorder to date but also one in which positive results included several outcomes such as promotion of abstinence, decreased craving, and reduction of risk of relapse.

    Article  PubMed  Google Scholar 

  34. Hashimoto K. The role of glutamate on the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(7):1558–68. https://doi.org/10.1016/j.pnpbp.2010.06.013.

    Article  PubMed  CAS  Google Scholar 

  35. Bonaventura J, Lam S, Carlton M, Boehm MA, Gomez JL, Solís O, et al. Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01093-2.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen HS, Lipton SA. Pharmacological implications of two distinct mechanisms of interaction of memantine with N-methyl-D-aspartate-gated channels. J Pharmacol Exp Ther. 2005;314(3):961–71. https://doi.org/10.1124/jpet.105.085142.

    Article  PubMed  CAS  Google Scholar 

  37. Abdallah CG, Averill LA, Krystal JH. Ketamine as a promising prototype for a new generation of rapid-acting antidepressants. Ann N Y Acad Sci. 2015;1344:66–77. https://doi.org/10.1111/nyas.12718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Newman JL, Beardsley PM. Effects of memantine, haloperidol, and cocaine on primary and conditioned reinforcement associated with cocaine in rhesus monkeys. Psychopharmacology. 2006;185(2):142–9. https://doi.org/10.1007/s00213-005-0282-2.

    Article  PubMed  CAS  Google Scholar 

  39. Blokhina EA, Kashkin VA, Zvartau EE, Danysz W, Bespalov AY. Effects of nicotinic and NMDA receptor channel blockers on intravenous cocaine and nicotine self-administration in mice. Eur Neuropsychopharmacol. 2005;15(2):219–25. https://doi.org/10.1016/j.euroneuro.2004.07.005.

    Article  PubMed  CAS  Google Scholar 

  40. Bisaga A, Aharonovich E, Cheng WY, Levin FR, Mariani JJ, Raby WN, et al. A placebo-controlled trial of memantine for cocaine dependence with high-value voucher incentives during a pre-randomization lead-in period. Drug Alcohol Depend. 2010;111(1–2):97–104. https://doi.org/10.1016/j.drugalcdep.2010.04.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Greger IH, Watson JF, Cull-Candy SG. Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron. 2017;94(4):713–30. https://doi.org/10.1016/j.neuron.2017.04.009.

    Article  PubMed  CAS  Google Scholar 

  42. Borgland SL, Malenka RC, Bonci A. Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci. 2004;24(34):7482–90. https://doi.org/10.1523/JNEUROSCI.1312-04.2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ungless MA, Whistler JL, Malenka RC, Bonci A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature. 2001;411(6837):583–7.

    Article  PubMed  CAS  Google Scholar 

  44. Wolf ME, Ferrario CR. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev. 2010;35(2):185–211. https://doi.org/10.1016/j.neubiorev.2010.01.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. LaCrosse AL, O’Donovan SM, Sepulveda-Orengo MT, McCullumsmith RE, Reissner KJ, Schwendt M, et al. Contrasting the role of xCT and GLT-1 upregulation in the ability of ceftriaxone to attenuate the cue-induced reinstatement of cocaine seeking and normalize AMPA receptor subunit expression. J Neurosci. 2017;37(24):5809–21. https://doi.org/10.1523/JNEUROSCI.3717-16.2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Garcia-Keller C, Kupchik YM, Gipson CD, Brown RM, Spencer S, Bollati F, et al. Glutamatergic mechanisms of comorbidity between acute stress and cocaine self-administration. Mol Psychiatry. 2016;21(8):1063–9. https://doi.org/10.1038/mp.2015.151.

    Article  PubMed  CAS  Google Scholar 

  47. LaCrosse AL, Hill K, Knackstedt LA. Ceftriaxone attenuates cocaine relapse after abstinence through modulation of nucleus accumbens AMPA subunit expression. Eur Neuropsychopharmacol. 2016;26(2):186–94. https://doi.org/10.1016/j.euroneuro.2015.12.022.

    Article  PubMed  CAS  Google Scholar 

  48. Minozzi S, Cinquini M, Amato L, Davoli M, Farrell MF, Pani PP et al. Anticonvulsants for cocaine dependence. Cochrane Database Syst Rev. 2015(4):Cd006754. https://doi.org/10.1002/14651858.CD006754.pub4.

  49. Kampman KM, Pettinati HM, Lynch KG, Spratt K, Wierzbicki MR, O’Brien CP. A double-blind, placebo-controlled trial of topiramate for the treatment of comorbid cocaine and alcohol dependence. Drug Alcohol Depend. 2013;133(1):94–9. https://doi.org/10.1016/j.drugalcdep.2013.05.026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Brown ES, Sunderajan P, Hu LT, Sowell SM, Carmody TJ. A randomized, double-blind, placebo-controlled, trial of lamotrigine therapy in bipolar disorder, depressed or mixed phase and cocaine dependence. Neuropsychopharmacology. 2012;37(11):2347–54. https://doi.org/10.1038/npp.2012.90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Brown ES, Perantie DC, Dhanani N, Beard L, Orsulak P, Rush AJ. Lamotrigine for bipolar disorder and comorbid cocaine dependence: a replication and extension study. J Affect Disord. 2006;93(1–3):219–22. https://doi.org/10.1016/j.jad.2006.02.001.

    Article  PubMed  CAS  Google Scholar 

  52. Berger SP, Winhusen TM, Somoza EC, Harrer JM, Mezinskis JP, Leiderman DB, et al. A medication screening trial evaluation of reserpine, gabapentin and lamotrigine pharmacotherapy of cocaine dependence. Addiction. 2005;100(Suppl 1):58–67. https://doi.org/10.1111/j.1360-0443.2005.00983.x.

    Article  PubMed  Google Scholar 

  53. Schatzberg AF, Nemeroff CB. The American psychiatric association publishing textbook of psychopharmacology. Fifth edition. Arlington, Virginia: American Psychiatric Association Publishing; 2017.

  54. Zhou JY, Martinez JA, Shen JP. Lamotrigine-induced hemophagocytic lymphohistiocytosis with Takotsubo cardiomyopathy: a case report. J Med Case Reports. 2019;13(1):345. https://doi.org/10.1186/s13256-019-2295-1.

    Article  Google Scholar 

  55. Ciraulo DA, Sarid-Segal O, Knapp CM, Ciraulo AM, LoCastro J, Bloch DA, et al. Efficacy screening trials of paroxetine, pentoxifylline, riluzole, pramipexole and venlafaxine in cocaine dependence. Addiction. 2005;100(Suppl 1):12–22. https://doi.org/10.1111/j.1360-0443.2005.00985.x.

    Article  PubMed  Google Scholar 

  56. Sepulveda-Orengo MT, Healey KL, Kim R, Auriemma AC, Rojas J, Woronoff N, et al. Riluzole impairs cocaine reinstatement and restores adaptations in intrinsic excitability and GLT-1 expression. Neuropsychopharmacology. 2018;43(6):1212–23. https://doi.org/10.1038/npp.2017.244.

    Article  PubMed  CAS  Google Scholar 

  57. Yao R, Wang H, Yuan M, Wang G, Wu C. Efficacy and safety of riluzole for depressive disorder: a systematic review and meta-analysis of randomized placebo-controlled trials. Psychiatry Res. 2020;284: 112750. https://doi.org/10.1016/j.psychres.2020.112750.

    Article  PubMed  CAS  Google Scholar 

  58. Ortiz-Ruiz G, Caballero-Lopez J, Friedland IR, Woods GL, Carides A, Protocol 018 Ertapenem Community-Acquired Pneumonia Study G. A study evaluating the efficacy, safety, and tolerability of ertapenem versus ceftriaxone for the treatment of community-acquired pneumonia in adults. Clin Infect Dis. 2002;34(8):1076–83. https://doi.org/10.1086/339543.

    Article  PubMed  CAS  Google Scholar 

  59. Owens RC Jr, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for clostridium difficile infection. Clin Infect Dis. 2008;46(Suppl 1):S19-31. https://doi.org/10.1086/521859.

    Article  PubMed  Google Scholar 

  60. Zeng L, Choonara I, Zhang L, Xue S, Chen Z, He M. Safety of ceftriaxone in paediatrics: a systematic review protocol. BMJ Open. 2017;7(8): e016273. https://doi.org/10.1136/bmjopen-2017-016273.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ivan Ezquerra-Romano I, Lawn W, Krupitsky E, Morgan CJA. Ketamine for the treatment of addiction: evidence and potential mechanisms. Neuropharmacology. 2018;142:72–82. https://doi.org/10.1016/j.neuropharm.2018.01.017.

    Article  PubMed  CAS  Google Scholar 

  62. Lerma J, Paternain AV, Rodríguez-Moreno A, López-García JC. Molecular physiology of kainate receptors. Physiol Rev. 2001;81(3):971–98. https://doi.org/10.1152/physrev.2001.81.3.971.

    Article  PubMed  CAS  Google Scholar 

  63. Van Nest D, Hernandez NS, Kranzler HR, Pierce RC, Schmidt HD. Effects of LY466195, a selective kainate receptor antagonist, on ethanol preference and drinking in rats. Neurosci Lett. 2017;639:8–12. https://doi.org/10.1016/j.neulet.2016.12.050.

    Article  PubMed  CAS  Google Scholar 

  64. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol. 1997;37:205–37. https://doi.org/10.1146/annurev.pharmtox.37.1.205.

    Article  PubMed  CAS  Google Scholar 

  65. Mitrano DA, Smith Y. Comparative analysis of the subcellular and subsynaptic localization of mGluR1a and mGluR5 metabotropic glutamate receptors in the shell and core of the nucleus accumbens in rat and monkey. J Comp Neurol. 2007;500(4):788–806. https://doi.org/10.1002/cne.21214.

    Article  PubMed  CAS  Google Scholar 

  66. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295–322. https://doi.org/10.1146/annurev.pharmtox.011008.145533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Gross KS, Brandner DD, Martinez LA, Olive MF, Meisel RL, Mermelstein PG. Opposite effects of mGluR1a and mGluR5 activation on nucleus accumbens medium spiny neuron dendritic spine density. PLoS One. 2016;11(9): e0162755. https://doi.org/10.1371/journal.pone.0162755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. • Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10(8):561–72. https://doi.org/10.1038/nrn2515. A classic review which provides important background for appreciation of several agents listed and described on manuscript.

    Article  PubMed  CAS  Google Scholar 

  69. Allain F, Roberts DCS, Levesque D, Samaha A-N. Intermittent intake of rapid cocaine injections promotes robust psychomotor sensitization, increased incentive motivation for the drug and mGlu2/3 receptor dysregulation. Neuropharmacology. 2017;117:227–37. https://doi.org/10.1016/j.neuropharm.2017.01.026.

    Article  PubMed  CAS  Google Scholar 

  70. Reissner KJ, Kalivas PW. Using glutamate homeostasis as a target for treating addictive disorders. Behav Pharmacol. 2010;21(5–6):514–22. https://doi.org/10.1097/FBP.0b013e32833d41b2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mitrano DA, Arnold C, Smith Y. Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the nucleus accumbens of cocaine-treated rats. Neuroscience. 2008;154(2):653–66. https://doi.org/10.1016/j.neuroscience.2008.03.049.

    Article  PubMed  CAS  Google Scholar 

  72. Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, et al. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology. 2005;30(2):296–309. https://doi.org/10.1038/sj.npp.1300579.

    Article  PubMed  CAS  Google Scholar 

  73. Fuchs RA, Ramirez DR, Bell GH. Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine seeking in rats. Psychopharmacology. 2008;200(4):545–56. https://doi.org/10.1007/s00213-008-1234-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Xie X, Ramirez DR, Lasseter HC, Fuchs RA. Effects of mGluR1 antagonism in the dorsal hippocampus on drug context-induced reinstatement of cocaine-seeking behavior in rats. Psychopharmacology. 2010;208(1):1–11. https://doi.org/10.1007/s00213-009-1700-7.

    Article  PubMed  CAS  Google Scholar 

  75. Xie X, Lasseter HC, Ramirez DR, Ponds KL, Wells AM, Fuchs RA. Subregion-specific role of glutamate receptors in the nucleus accumbens on drug context-induced reinstatement of cocaine-seeking behavior in rats. Addict Biol. 2012;17(2):287–99. https://doi.org/10.1111/j.1369-1600.2011.00325.x.

    Article  PubMed  CAS  Google Scholar 

  76. Achat-Mendes C, Platt DM, Spealman RD. Antagonism of metabotropic glutamate 1 receptors attenuates behavioral effects of cocaine and methamphetamine in squirrel monkeys. J Pharmacol Exp Ther. 2012;343(1):214–24. https://doi.org/10.1124/jpet.112.196295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yu F, Zhong P, Liu X, Sun D, Gao H-Q, Liu Q-S. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis. Neuropsychopharmacology. 2013;38(7):1308–21. https://doi.org/10.1038/npp.2013.29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Hammad AM, Alasmari F, Althobaiti YS, Sari Y. Modulatory effects of ampicillin/sulbactam on glial glutamate transporters and metabotropic glutamate receptor 1 as well as reinstatement to cocaine-seeking behavior. Behav Brain Res. 2017;332:288–98. https://doi.org/10.1016/j.bbr.2017.06.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Halbout B, Bernardi RE, Hansson AC, Spanagel R. Incubation of cocaine seeking following brief cocaine experience in mice is enhanced by mGluR1 blockade. J Neurosci. 2014;34(5):1781–90. https://doi.org/10.1523/JNEUROSCI.1076-13.2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR, Spanagel R, et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci. 2009;12(8):1036–41. https://doi.org/10.1038/nn.2367.

    Article  PubMed  CAS  Google Scholar 

  81. Loweth JA, Tseng KY, Wolf ME. Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving. Neuropharmacology. 2014;76 Pt B:287–300. https://doi.org/10.1016/j.neuropharm.2013.04.061.

    Article  PubMed  CAS  Google Scholar 

  82. Terbeck S, Akkus F, Chesterman LP, Hasler G. The role of metabotropic glutamate receptor 5 in the pathogenesis of mood disorders and addiction: combining preclinical evidence with human positron emission tomography (PET) studies. Front Neurosci. 2015;9:86. https://doi.org/10.3389/fnins.2015.00086.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kenny PJ, Paterson NE, Boutrel B, Semenova S, Harrison AA, Gasparini F, et al. Metabotropic glutamate 5 receptor antagonist MPEP decreased nicotine and cocaine self-administration but not nicotine and cocaine-induced facilitation of brain reward function in rats. Ann N Y Acad Sci. 2003;1003:415–8. https://doi.org/10.1196/annals.1300.040.

    Article  PubMed  CAS  Google Scholar 

  84. Tessari M, Pilla M, Andreoli M, Hutcheson DM, Heidbreder CA. Antagonism at metabotropic glutamate 5 receptors inhibits nicotine- and cocaine-taking behaviours and prevents nicotine-triggered relapse to nicotine-seeking. Eur J Pharmacol. 2004;499(1–2):121–33. https://doi.org/10.1016/j.ejphar.2004.07.056.

    Article  PubMed  CAS  Google Scholar 

  85. Kenny PJ, Boutrel B, Gasparini F, Koob GF, Markou A. Metabotropic glutamate 5 receptor blockade may attenuate cocaine self-administration by decreasing brain reward function in rats. Psychopharmacology. 2005;179(1):247–54. https://doi.org/10.1007/s00213-004-2069-2.

    Article  PubMed  CAS  Google Scholar 

  86. Keck TM, Yang H-J, Bi G-H, Huang Y, Zhang H-Y, Srivastava R, et al. Fenobam sulfate inhibits cocaine-taking and cocaine-seeking behavior in rats: implications for addiction treatment in humans. Psychopharmacology. 2013;229(2):253–65. https://doi.org/10.1007/s00213-013-3106-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Paterson NE, Markou A. The metabotropic glutamate receptor 5 antagonist MPEP decreased break points for nicotine, cocaine and food in rats. Psychopharmacology. 2005;179(1):255–61. https://doi.org/10.1007/s00213-004-2070-9.

    Article  PubMed  CAS  Google Scholar 

  88. Bäckström P, Hyytiä P. Ionotropic and metabotropic glutamate receptor antagonism attenuates cue-induced cocaine seeking. Neuropsychopharmacology. 2006;31(4):778–86. https://doi.org/10.1038/sj.npp.1300845.

    Article  PubMed  CAS  Google Scholar 

  89. • Gobin C, Schwendt M. The cognitive cost of reducing relapse to cocaine-seeking with mGlu5 allosteric modulators. Psychopharmacology. 2020;237(1):115–25. https://doi.org/10.1007/s00213-019-05351-8. Describes complexity around some of these targets. Shows that repeated administration of two agents with seemingly distinct pharmacological mechanisms (i.e. negative or positive mGluR5 allosteric modulators) results in similar behavioral responses (lower cocaine seeking) but different cognitive performance (mGlu5 NAM MTEP impaired working memory) in rats. This is important in the investigation of novel agents for cocaine use to elucidate common mechanisms and improve the monitoring of tolerability and adverse effects of any novel compounds that might reach human trials.

    Article  PubMed  CAS  Google Scholar 

  90. Cleva RM, Hicks MP, Gass JT, Wischerath KC, Plasters ET, Widholm JJ, et al. mGluR5 positive allosteric modulation enhances extinction learning following cocaine self-administration. Behav Neurosci. 2011;125(1):10–9. https://doi.org/10.1037/a0022339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Gass JT, Olive MF. Positive allosteric modulation of mGluR5 receptors facilitates extinction of a cocaine contextual memory. Biol Psychiatry. 2009;65(8):717–20. https://doi.org/10.1016/j.biopsych.2008.11.001.

    Article  PubMed  CAS  Google Scholar 

  92. • Martinez D, Slifstein M, Nabulsi N, Grassetti A, Urban NB, Perez A, et al. Imaging glutamate homeostasis in cocaine addiction with the metabotropic glutamate receptor 5 positron emission tomography radiotracer [(11)C]ABP688 and magnetic resonance spectroscopy. Biol Psychiatry. 2014;75(2):165–71. https://doi.org/10.1016/j.biopsych.2013.06.026. Clinical translational examination of mGlur5 receptors in humans with cocaine use disorder.

    Article  PubMed  CAS  Google Scholar 

  93. Hulka LM, Treyer V, Scheidegger M, Preller KH, Vonmoos M, Baumgartner MR, et al. Smoking but not cocaine use is associated with lower cerebral metabotropic glutamate receptor 5 density in humans. Mol Psychiatry. 2014;19(5):625–32. https://doi.org/10.1038/mp.2013.51.

    Article  PubMed  CAS  Google Scholar 

  94. Milella MS, Marengo L, Larcher K, Fotros A, Dagher A, Rosa-Neto P, et al. Limbic system mGluR5 availability in cocaine dependent subjects: a high-resolution PET [(11)C]ABP688 study. Neuroimage. 2014;98:195–202. https://doi.org/10.1016/j.neuroimage.2014.04.061.

    Article  PubMed  CAS  Google Scholar 

  95. Pendyam S, Mohan A, Kalivas PW, Nair SS. Computational model of extracellular glutamate in the nucleus accumbens incorporates neuroadaptations by chronic cocaine. Neuroscience. 2009;158(4):1266–76. https://doi.org/10.1016/j.neuroscience.2008.11.014.

    Article  PubMed  CAS  Google Scholar 

  96. Xi ZX, Li X, Peng XQ, Li J, Chun L, Gardner EL, et al. Inhibition of NAALADase by 2-PMPA attenuates cocaine-induced relapse in rats: a NAAG-mGluR2/3-mediated mechanism. J Neurochem. 2010;112(2):564–76. https://doi.org/10.1111/j.1471-4159.2009.06478.x.

    Article  PubMed  CAS  Google Scholar 

  97. Karkhanis AN, Beveridge TJR, Blough BE, Jones SR, Ferris MJ. The individual and combined effects of phenmetrazine and mgluR2/3 agonist LY379268 on the motivation to self-administer cocaine. Drug Alcohol Depend. 2016;166:51–60. https://doi.org/10.1016/j.drugalcdep.2016.06.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Czoty PW, Blough BE, Landavazo A, Nader MA. Effects of the mGluR2/3 receptor agonist LY379268 on the reinforcing strength of cocaine in rhesus monkeys. Psychopharmacology. 2020;237(2):409–17. https://doi.org/10.1007/s00213-019-05377-y.

    Article  PubMed  CAS  Google Scholar 

  99. Spencer S, Kalivas PW. Glutamate transport: a new bench to bedside mechanism for treating drug abuse. Int J Neuropsychopharmacol. 2017;20(10):797–812. https://doi.org/10.1093/ijnp/pyx050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kim R, Sepulveda-Orengo MT, Healey KL, Williams EA, Reissner KJ. Regulation of glutamate transporter 1 (GLT-1) gene expression by cocaine self-administration and withdrawal. Neuropharmacology. 2018;128:1–10. https://doi.org/10.1016/j.neuropharm.2017.09.019.

    Article  PubMed  CAS  Google Scholar 

  101. Fischer-Smith KD, Houston AC, Rebec GV. Differential effects of cocaine access and withdrawal on glutamate type 1 transporter expression in rat nucleus accumbens core and shell. Neuroscience. 2012;210:333–9. https://doi.org/10.1016/j.neuroscience.2012.02.049.

    Article  PubMed  CAS  Google Scholar 

  102. • Reissner KJ, Gipson CD, Tran PK, Knackstedt LA, Scofield MD, Kalivas PW. Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement. Addict Biol. 2015;20(2):316–23. https://doi.org/10.1111/adb.12127. Shows preclinical evidence highlighting role of GLT-1 transporters in the medication of therapeutic effects of agents such as NAC.

    Article  PubMed  CAS  Google Scholar 

  103. • Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: implications for psychostimulant addiction behavior. Neurochem Int. 2021;144: 104896. https://doi.org/10.1016/j.neuint.2020.104896. Presents a comprehensive description of glutamate signaling in the ventral tegmental area, and the nucleus accumbens which are the key areas associated with neuronal and behavioral changes with cocaine use. It highlights the role of identifying alterations induced by cocaine in glutamate homeostasis for the identification of targets for novel drugs.

    Article  PubMed  CAS  Google Scholar 

  104. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7. https://doi.org/10.1038/nature03180.

    Article  PubMed  CAS  Google Scholar 

  105. •• Smaga I, Fierro D, Mesa J, Filip M, Knackstedt LA. Molecular changes evoked by the beta-lactam antibiotic ceftriaxone across rodent models of substance use disorder and neurological disease. Neurosci Biobehav Rev. 2020;115:116–30. https://doi.org/10.1016/j.neubiorev.2020.05.016. This review focuses on ceftriaxone as an example of drug repurposing in a historical context, especially during periods when progress on the development of novel agents was limited. Includes models of substance use disorder showing dose-dependent effects and persistence of the response beyond acute ceftriaxone administration.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. • Niedzielska-Andres E, Mizera J, Sadakierska-Chudy A, Pomierny-Chamiolo L, Filip M. Changes in the glutamate biomarker expression in rats vulnerable or resistant to the rewarding effects of cocaine and their reversal by ceftriaxone. Behav Brain Res. 2019;370: 111945. https://doi.org/10.1016/j.bbr.2019.111945. Depicts attractive neurobiological effects of beta-lactamic agents (i.e., ceftriaxone) such as upregulation xCT and GLT-1 but also behavioral correlates such as reduction of reinstatement of cocaine seeking behavior, in rodents.

    Article  PubMed  CAS  Google Scholar 

  107. • Bechard AR, Hamor PU, Schwendt M, Knackstedt LA. The effects of ceftriaxone on cue-primed reinstatement of cocaine-seeking in male and female rats: estrous cycle effects on behavior and protein expression in the nucleus accumbens. Psychopharmacology. 2018;235(3):837–48. https://doi.org/10.1007/s00213-017-4802-7. Investigates sex differences in glutamate adaptations following cocaine self-administration in rats and shows the reinstatement prevention effect on female rats is dependent on the specific phases of the menstrual cycle.

    Article  PubMed  CAS  Google Scholar 

  108. Trantham-Davidson H, LaLumiere RT, Reissner KJ, Kalivas PW, Knackstedt LA. Ceftriaxone normalizes nucleus accumbens synaptic transmission, glutamate transport, and export following cocaine self-administration and extinction training. J Neurosci. 2012;32(36):12406–10. https://doi.org/10.1523/JNEUROSCI.1976-12.2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sondheimer I, Knackstedt LA. Ceftriaxone prevents the induction of cocaine sensitization and produces enduring attenuation of cue- and cocaine-primed reinstatement of cocaine-seeking. Behav Brain Res. 2011;225(1):252–8. https://doi.org/10.1016/j.bbr.2011.07.041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Knackstedt LA, Melendez RI, Kalivas PW. Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatry. 2010;67(1):81–4. https://doi.org/10.1016/j.biopsych.2009.07.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sari Y, Smith KD, Ali PK, Rebec GV. Upregulation of GLT1 attenuates cue-induced reinstatement of cocaine-seeking behavior in rats. J Neurosci. 2009;29(29):9239–43. https://doi.org/10.1523/JNEUROSCI.1746-09.2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Zeng L, Wang C, Jiang M, Chen K, Zhong H, Chen Z, et al. Safety of ceftriaxone in paediatrics: a systematic review. Arch Dis Child. 2020;105(10):981–5. https://doi.org/10.1136/archdischild-2019-317950.

    Article  PubMed  Google Scholar 

  113. Goodwani S, Rao PS, Bell RL, Sari Y. Amoxicillin and amoxicillin/clavulanate reduce ethanol intake and increase GLT-1 expression as well as AKT phosphorylation in mesocorticolimbic regions. Brain Res. 2015;1622:397–408. https://doi.org/10.1016/j.brainres.2015.07.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Hakami AY, Alshehri FS, Althobaiti YS, Sari Y. Effects of orally administered Augmentin on glutamate transporter 1, cystine-glutamate exchanger expression and ethanol intake in alcohol-preferring rats. Behav Brain Res. 2017;320:316–22. https://doi.org/10.1016/j.bbr.2016.12.016.

    Article  PubMed  CAS  Google Scholar 

  115. Kim J, John J, Langford D, Walker E, Ward S, Rawls SM. Clavulanic acid enhances glutamate transporter subtype I (GLT-1) expression and decreases reinforcing efficacy of cocaine in mice. Amino Acids. 2016;48(3):689–96. https://doi.org/10.1007/s00726-015-2117-8.

    Article  PubMed  CAS  Google Scholar 

  116. Kim DJ, King JA, Zuccarelli L, Ferris CF, Koppel GA, Snowdon CT, et al. Clavulanic acid: a competitive inhibitor of beta-lactamases with novel anxiolytic-like activity and minimal side effects. Pharmacol Biochem Behav. 2009;93(2):112–20. https://doi.org/10.1016/j.pbb.2009.04.013.

    Article  PubMed  CAS  Google Scholar 

  117. •• Knackstedt LA, Wu L, Rothstein JD, Vidensky S, Gordon J, Ramanjulu M, et al. MC-100093, a novel beta-lactam GLT-1 enhancer devoid of antimicrobial properties attenuates cocaine relapse in rats. J Pharmacol Exp Ther. 2021. https://doi.org/10.1124/jpet.121.000532. Presents the development process and actions of MC-100093, a potent up regulator of GLT-1 from the beta-lactam drug class that is devoid of antibiotic activity, potentially a first step towards the development of novel agents with actions on glutamate signaling for the treatment of cocaine use disorder without some of the major concerns including antibacterial properties and adverse effects of antibiotics.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Daniel S, Doron M, Fishman B, Koren G, Lunenfeld E, Levy A. The safety of amoxicillin and clavulanic acid use during the first trimester of pregnancy. Br J Clin Pharmacol. 2019;85(12):2856–63. https://doi.org/10.1111/bcp.14118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Sugita R, Yamamoto S, Motoyama H, Yarita M. Efficacy and safety of clavulanic acid/amoxicillin (1: 14) dry syrup in the treatment of children with acute bacterial rhinosinusitis. Jpn J Antibiot. 2015;68(3):189–200.

    PubMed  Google Scholar 

  120. Reissner KJ, Brown RM, Spencer S, Tran PK, Thomas CA, Kalivas PW. Chronic administration of the methylxanthine propentofylline impairs reinstatement to cocaine by a GLT-1-dependent mechanism. Neuropsychopharmacology. 2014;39(2):499–506. https://doi.org/10.1038/npp.2013.223.

    Article  PubMed  CAS  Google Scholar 

  121. Frampton M, Harvey RJ, Kirchner V. Propentofylline for dementia. Cochrane Database Syst Rev. 2003(2):Cd002853. https://doi.org/10.1002/14651858.Cd002853.

  122. Bath PM, Bath-Hextall FJ. Pentoxifylline, propentofylline and pentifylline for acute ischaemic stroke. Cochrane Database Syst Rev. 2004(3):Cd000162. https://doi.org/10.1002/14651858.CD000162.pub2.

  123. • Zhang L-Y, Zhou Y-Q, Yu Z-P, Zhang X-Q, Shi J, Shen H-W. Restoring glutamate homeostasis in the nucleus accumbens via endocannabinoid-mimetic drug prevents relapse to cocaine seeking behavior in rats. Neuropsychopharmacology. 2021;46(5):970–81. https://doi.org/10.1038/s41386-021-00955-1. Provides novel evidence supporting the role of endocannabinoids in the regulation of glutamate hemostasis in the nucleus accumbance core.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Martin-Garcia E, Bourgoin L, Cathala A, Kasanetz F, Mondesir M, Gutierrez-Rodriguez A, et al. Differential control of cocaine self-administration by GABAergic and glutamatergic CB1 cannabinoid receptors. Neuropsychopharmacology. 2016;41(9):2192–205. https://doi.org/10.1038/npp.2015.351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Mariani JJ, Pavlicova M, Bisaga A, Nunes EV, Brooks DJ, Levin FR. Extended-release mixed amphetamine salts and topiramate for cocaine dependence: a randomized controlled trial. Biol Psychiatry. 2012;72(11):950–6. https://doi.org/10.1016/j.biopsych.2012.05.032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Angarita GA, Hadizadeh H, Cerdena I, Potenza MN. Can pharmacotherapy improve treatment outcomes in people with co-occurring major depressive and cocaine use disorders? Expert Opin Pharmacother. 2021;22(13):1669–83. https://doi.org/10.1080/14656566.2021.1931684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry. 2018;23(1):59–69. https://doi.org/10.1038/mp.2017.190.

    Article  PubMed  CAS  Google Scholar 

  128. Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, et al. Sub-anesthetic concentrations of (R, S)-ketamine metabolites inhibit acetylcholine-evoked currents in alpha7 nicotinic acetylcholine receptors. Eur J Pharmacol. 2013;698(1–3):228–34. https://doi.org/10.1016/j.ejphar.2012.11.023.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants R21 DA040914 (GAA), R21 DA043055 (GAA), R01 DA052454 (GAA), R01 DA039136 (MNP), and K01 DA042998 (PDW) from the National Institute on Drug Abuse (NIDA). HH received funding from the Fredrick C. and Herta G. Redlich Research Fund, and JMF received funding from the Daniel X and Mary Freedman Foundation and the Neuroscience Research Training Program at Yale University. The work described in this article was also funded in part by the State of Connecticut, Department of Mental Health and Addiction Services, but this publication does not express the views of the Department of Mental Health and Addiction Services or the State of Connecticut. The views and opinions expressed are those of the authors. The funding sources had no involvement in the literature search, interpretation of the literature, writing of the manuscript, or in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Angarita.

Ethics declarations

Competing Interests

The authors report that they have no financial conflicts of interest with respect to the content of this manuscript. Dr. Potenza has the following relationships to disclose: Dr. Potenza has consulted for and advised Game Day Data, Opiant Pharmaceuticals, Idorsia, BariaTek, the Addiction Policy Forum, and AXA; has been involved in a patent application with Yale University and Novartis; has received research support from the Mohegan Sun Casino and the Connecticut Council on Problem Gambling; has participated in surveys, mailings, or telephone consultations related to addictive disorders or other health topics; has consulted for or advised law offices and gambling entities on issues related to addictive disorders and behaviors; has provided clinical care in the Connecticut Department of Mental Health and Addiction Services Problem Gambling Services Program; has performed grant reviews; has edited journals and journal sections; has given academic lectures in grand rounds, CME events, and other clinical or scientific venues; and has generated books or book chapters for publishers of mental health texts. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Addictions

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadizadeh, H., Flores, J.M., Mayerson, T. et al. Glutamatergic Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep 9, 101–112 (2022). https://doi.org/10.1007/s40473-022-00252-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-022-00252-1

Keywords

Navigation