Skip to main content

Advertisement

Log in

Interactions of Emotion and Memory in the Aging Brain: Neural and Psychological Correlates

  • Social Cognition (J Beadle, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to summarize current research on the psychological and neural substrates of emotion and memory in aging.

Recent Findings

Emotional memory remains largely intact with age; however, there are mixed findings regarding what type of information is preserved. Shifts in functional connectivity in the medial temporal lobe (MTL) and frontal cortex may underlie emotional memory alterations in aging and are particularly vulnerable to age-related disorders. However, we may be able to harness the interaction between emotion and memory to alleviate memory dysfunction in late life.

Summary

The relationship between emotion and memory in aging is complex, as emotional biases exist but may differ depending on factors such as underlying pathology or stress hormones. With the advent of advanced imaging methodology and sensitive cognitive tasks, we are better suited to address these research questions. Understanding how emotion may be harnessed to modulate memory may provide a mechanism to rescue memory deficits in aging and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source of norepinephrine (NE), degrades with age. The PFC plays a role in modulating emotional memory. In aging, there may be increased reliance on amygdala-PFC connectivity rather than amygdala-hippocampal connectivity. D The dentate gyrus (DG) subfield of the hippocampus can perform pattern separation, while the CA3 subfield can perform pattern completion. In aging, there is a bias towards pattern completion and away from pattern separation. The basolateral amygdala (BLA) is involved in the emotional modulation of memory. In aging, there is reduced amygdala-hippocampal connectivity during memory performance and increased MTL connectivity during false recognition. *Caveat: It is important note that the age-related changes depicted here are generally found; however, there are individual differences in aging such that not all older adults will show these effects. For example, we depict increased glucocorticoids in aging; however, glucocorticoid levels can vary widely with age such that some older adults have levels on par with young adults while others have elevated levels. This age-related variability is important to highlight and could explain discrepancies in findings

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Luo L, Craik FIM. Aging and memory: a cognitive approach. Can J Psychiatry. 2008;53:346–53.

    PubMed  Google Scholar 

  2. Leal SL, Yassa MA. Neurocognitive Aging and the Hippocampus across Species. Trends Neurosci. 2015;38:800–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Milner B, Squire LR, Kandel ER. Cognitive neuuroscience and the study of memory. 1998;20:445–68.

    CAS  Google Scholar 

  4. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    CAS  PubMed  Google Scholar 

  5. McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci. 2004;27:1–28.

    CAS  PubMed  Google Scholar 

  6. Kensinger EA. Remembering the details : effects of emotion. Emot Rev. 2009;1:99–113.

    PubMed  PubMed Central  Google Scholar 

  7. Denburg NL, Buchanan TW, Tranel D, Adolphs R. Evidence for preserved emotional memory in normal older persons. Emotion. 2003;3:239–53.

    PubMed  Google Scholar 

  8. Mather M, Carstensen LL. Aging and motivated cognition: the positivity effect in attention and memory. Trends Cogn Sci. 2005;9:496–502.

    PubMed  Google Scholar 

  9. McGaugh JL. Make mild moments memorable: add a little arousal. Trends Cogn Sci. 2006;10:345–7.

    PubMed  Google Scholar 

  10. • Leal SL, Ferguson LA, Harrison TM, Jagust WJ (2019) Development of a mnemonic discrimination task using naturalistic stimuli with applications to aging and preclinical Alzheimer’s disease. Learn Mem 26:219–228. Older adults have preserved emotional memory when tested immediately but worse emotional memory when tested after a 24-h delay.

    PubMed  PubMed Central  Google Scholar 

  11. Kensinger EA, Garoff-Eaton RJ, Schacter DL. Effects of emotion on memory specificity in young and older adults. Journals Gerontol - Ser B Psychol Sci Soc Sci. 2007;62:P208–15.

    Google Scholar 

  12. LeDoux JE. Emotional memory systems in the brain. Behav Brain Res. 1993;58:69–79.

    CAS  PubMed  Google Scholar 

  13. Sudheimer DKD, O’Hara R, Spiegel D, Powers B, Kraemer CHC, Neri E, Weiner M, Hardan A, Hallmayer J, Dhabhar SFS. Cortisol, cytokines, and hippocampal volume interactions in the elderly. Front Aging Neurosci. 2014;6:153.

    PubMed  PubMed Central  Google Scholar 

  14. • Hämmerer D, Callaghan MF, Hopkins A, et al (2018) Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proc Natl Acad Sci U S A 115:2228–2233. Impaired LC integrity is associated with impaired memory for negative stimuli in older adults.

    PubMed  PubMed Central  Google Scholar 

  15. Koen JD, Yonelinas AP. The effects of healthy aging, amnestic mild cognitive impairment, and Alzheimer’s disease on recollection and familiarity: a meta-analytic review. Neuropsychol Rev. 2014;24:332–54.

    PubMed  PubMed Central  Google Scholar 

  16. Robitsek RJ, Fortin NJ, Ming TK, Gallagher M, Eichenbaum H. Cognitive aging: a common decline of episodic recollection and spatial memory in rats. J Neurosci. 2008;28:8945–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Reagh ZM, Roberts JM, Ly M, Diprospero N, Murray E, Yassa MA. Spatial discrimination deficits as a function of mnemonic interference in aged adults with and without memory impairment. Hippocampus. 2014;24:303–14.

    PubMed  Google Scholar 

  18. Sperling R, Chua E, Cocchiarella A, Rand-Giovannetti E, Poldrack R, Schacter DL, Albert M. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage. 2003;20:1400–10.

    PubMed  Google Scholar 

  19. McIntyre JS, Craik FI. Age differences in memory for item and source information. Can J Psychol. 1987;41:175–92.

    CAS  PubMed  Google Scholar 

  20. Gracian EI, Shelley LE, Morris AM, Gilbert PE. Age-related changes in place learning for adjacent and separate locations. Neurobiol Aging. 2013;34:2304–9.

    PubMed  PubMed Central  Google Scholar 

  21. Stark SM, Yassa MA, Lacy JW, Stark CEL. A task to assess behavioral pattern separation (BPS) in humans: data from healthy aging and mild cognitive impairment. Neuropsychologia. 2013;51:2442–9.

    PubMed  PubMed Central  Google Scholar 

  22. Stark SM, Yassa MA, Stark CEL. Individual differences in spatial pattern separation performance associated with healthy aging in humans. Learn Mem. 2010;17:284–8.

    PubMed  PubMed Central  Google Scholar 

  23. Gallagher M, Burwell R, Burchinal M. Severity of spatial learning impairment in aging: development of a learning index for performance in the morris water maze. Behav Neurosci. 2015;129:540–8.

    PubMed  PubMed Central  Google Scholar 

  24. Jagust W. Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron. 2013;77:219–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11:1006–12.

    PubMed  PubMed Central  Google Scholar 

  26. Tulving E. Episodic memory: from mind to brain. Annu Rev Psychol. 2002;53:1–25.

    PubMed  Google Scholar 

  27. Kensinger EA. Age differences in memory for arousing and nonarousing emotional words. Journals Gerontol - Ser B Psychol Sci Soc Sci. 2008;63:P13–8.

    Google Scholar 

  28. Wright CI, Dickerson BC, Feczko E, Negeira A, Williams D. A functional magnetic resonance imaging study of amygdala responses to human faces in aging and mild Alzheimer’s disease. Biol Psychiatry. 2007;62:1388–95.

    PubMed  Google Scholar 

  29. Carstensen LL, Fung HH, Charles ST. Socioemotional selectivity theory and the regulation of emotion in the second half of life. Motiv Emot. 2003;27:103–23.

    Google Scholar 

  30. •• Carstensen LL, DeLiema M (2018) The positivity effect: a negativity bias in youth fades with age. Curr Opin Behav Sci 19:7–12. Review of literature that supports the hypothesis that the positivity effect is due to motivational changes as opposed to cognitive decline.

    PubMed  Google Scholar 

  31. Joubert C, Davidson PSR, Chainay H. When do older adults show a positivity effect in emotional memory? Exp Aging Res. 2018;44:455–68.

    PubMed  Google Scholar 

  32. Allard ES, Kensinger EA. Cognitive emotion regulation in adulthood and old age: positive gaze preferences across two strategies. Aging, Neuropsychol Cogn. 2018;25:213–30.

    Google Scholar 

  33. • Sakaki M, Raw JAL, Findlay J, Thottam M (2019) Advanced aging enhances the positivity effect in memory: due to cognitive control or age-related decline in emotional processing? Collabra Psychol. https://doi.org/10.1525/collabra.222. Older adults with intact cognitive control capacities have a stronger positivity effect than those with poor cognitive control.

  34. Hess TM, Popham LE, Growney CM. Age-related effects on memory for social stimuli: the role of valence, arousal, and emotional responses. Exp Aging Res. 2017;43:105–23.

    PubMed  PubMed Central  Google Scholar 

  35. Leal SL, Yassa MA. Effects of aging on mnemonic discrimination of emotional information. Behav Neurosci. 2014;128:539–47.

    PubMed  PubMed Central  Google Scholar 

  36. Kensinger EA. How emotion affects older adults’ memories for event details. Memory. 2009;17:208–19.

    PubMed  Google Scholar 

  37. Kalenzaga S, Ergis AM, Lamidey V, Clarys D, Piolino P. The positivity bias in aging: motivation or degradation? Emotion. 2016;16:602–10.

    PubMed  Google Scholar 

  38. Price JL, McKeel DW, Buckles VD, et al. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging. 2009;30:1026–36.

    PubMed  PubMed Central  Google Scholar 

  39. Leal SL, Noche JA, Murray EA, Yassa MA. Positivity effect specific to older adults with subclinical memory impairment. Learn Mem. 2016;23:415–21.

    PubMed  PubMed Central  Google Scholar 

  40. Fleming K, Kim SH, Doo M, Maguire G, Potkin SG. Memory for emotional stimuli in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2003;18:340–2.

    PubMed  Google Scholar 

  41. Landfield P, Blalock E, Chen K-C, Porter N. A new glucocorticoid hypothesis of brain aging: implications for Alzheimers disease. Curr Alzheimer Res. 2007;4:205–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Golomb J, Kluger A, de Leon MJ, Ferris SH, Convit A, Mittelman MS, Cohen J, Rusinek H, De Santi S, George AE. Hippocampal formation size in normal human aging: a correlate of delayed secondary memory performance. Learn Mem. 1994;1:45–54.

    CAS  PubMed  Google Scholar 

  43. Furst AJ, Mormino EC. A BOLD move: clinical application of fMRI in aging. Neurology. 2010;74:1940–1.

    PubMed  Google Scholar 

  44. Yassa MA, Stark CEL. Pattern separation in the hippocampus. Trends Neurosci. 2011;34:515–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kirwan CB, Stark CEL. Overcoming interference: an fMRI investigation of pattern separation in the medial temporal lobe. Learn Mem. 2007;14:625–33.

    PubMed  PubMed Central  Google Scholar 

  46. Wilson IA, Gallagher M, Eichenbaum H, Tanila H. Neurocognitive aging: prior memories hinder new hippocampal encoding. Trends Neurosci. 2006;29:662–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yassa MA, Lacy JW, Stark SM, Albert MS, Gallagher M, Stark CEL. Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus. 2011;21:968–79.

    PubMed  Google Scholar 

  48. Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett SS, Shelton AL, Gallagher M. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron. 2012;74:467–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Robin J, Moscovitch M. Details, gist and schema: hippocampal–neocortical interactions underlying recent and remote episodic and spatial memory. Curr Opin Behav Sci. 2017;17:114–23.

    Google Scholar 

  50. Langnes E, Sneve MH, Sederevicius D, Amlien IK, Walhovd KB, Fjell AM. Anterior and posterior hippocampus macro- and microstructure across the lifespan in relation to memory—a longitudinal study. Hippocampus. 2020;30:678–92.

    PubMed  Google Scholar 

  51. Dolcos F, Labar KS, Cabeza R. Remembering one year later: role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories. Proc Natl Acad Sci U S A. 2005;102:2626–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Petrovich GD, Canteras NS, Swanson LW. Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Rev. 2001;38:247–89.

    CAS  PubMed  Google Scholar 

  53. Jiang J, Sachdev P, Lipnicki DM, et al. A longitudinal study of brain atrophy over two years in community-dwelling older individuals. Neuroimage. 2014;86:203–11.

    CAS  PubMed  Google Scholar 

  54. Mather M, Canli T, English T, Whitfield S, Wais P, Ochsner K, Gabrieli JDE, Carstensen LL. Amygdala responses to emotionally valenced stimuli in older and younger adults. Psychol Sci. 2004;15:259–63.

    PubMed  Google Scholar 

  55. St. Jacques PL, Dolcos F, Cabeza R. Effects of aging on functional connectivity of the amygdala for subsequent memory of negative pictures: a network analysis of functional magnetic resonance imaging data. Psychol Sci. 2009;20:74–84.

    PubMed  Google Scholar 

  56. Leal SL, Noche JA, Murray EA, Yassa MA. Disruption of amygdala–entorhinal–hippocampal network in late-life depression. Hippocampus. 2017;27:464–76.

    PubMed  PubMed Central  Google Scholar 

  57. Murty VP, Sambataro F, Das S, Tan HY, Callicott JH, Goldberg TE, Meyer-Lindenberg A, Weinberger DR, Mattay VS. Age-related alterations in simple declarative memory and the effect of negative stimulus valence. J Cogn Neurosci. 2009;21:1920–33.

    PubMed  PubMed Central  Google Scholar 

  58. Reed AE, Carstensen LL. The theory behind the age-related positivity effect. Front Psychol. 2012;3:339.

    PubMed  PubMed Central  Google Scholar 

  59. Mather M. The affective neuroscience of aging. Annu Rev Psychol. 2016;67:213–38.

    PubMed  Google Scholar 

  60. Mammarella N, Di Domenico A, Palumbo R, Fairfield B. Self-generation and positivity effects following transcranial random noise stimulation in medial prefrontal cortex: a reality monitoring task in older adults. Cortex. 2017;91:186–96.

    PubMed  Google Scholar 

  61. Het S, Ramlow G, Wolf OT. A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology. 2005;30:771–84.

    CAS  PubMed  Google Scholar 

  62. Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85:296–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dahl MJ, Mather M, Düzel S, Bodammer NC, Lindenberger U, Kühn S, Werkle-Bergner M. Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nat Hum Behav. 2019;3:1203–14.

    PubMed  PubMed Central  Google Scholar 

  64. McEwen BS. Stress and the aging hippocampus. Front Neuroendocrinol. 1999;20:49–70.

    CAS  PubMed  Google Scholar 

  65. • Gutchess A, Alves AN, Paige LE, Rohleder N, Wolf JM (2019) Age differences in the relationship between cortisol and emotional memory. Psychol Aging 34:655–664. Higher levels of cortisol leads to a reduced emotional trade-off effect in older adults, particularly for negative stimuli.

    PubMed  Google Scholar 

  66. Ennis GE, An Y, Resnick SM, Ferrucci L, O’Brien RJ, Moffat SD. Long-term cortisol measures predict Alzheimer disease risk. Neurology. 2017;88:371–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, Takahashi S, Ehara S, Terayama Y, Sakai A. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. NeuroReport. 2006;17:1215–8.

    PubMed  Google Scholar 

  68. •• Betts MJ, Kirilina E, Otaduy MCG, et al (2019) Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 142:2558–2571. Review describing how novel MRI techiniques allowing in vivo techniques of the LC, and how that could be used for clinical and research applications.

    PubMed  PubMed Central  Google Scholar 

  69. Kubanis P, Zornetzer SF. Age-related behavioral and neurobiological changes: a review with an emphasis on memory. Behav Neural Biol. 1981;31:115–72.

    CAS  PubMed  Google Scholar 

  70. Sternberg DB, Martinez JL, Gold PE, McGaugh JL. Age-related memory deficits in rats and mice: enhancement with peripheral injections of epinephrine. Behav Neural Biol. 1985;44:213–20.

    CAS  PubMed  Google Scholar 

  71. Mammarella N, Di Domenico A, Palumbo R, Fairfield B. Noradrenergic modulation of emotional memory in aging. Ageing Res Rev. 2016;27:61–6.

    CAS  PubMed  Google Scholar 

  72. Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12:357–67.

    CAS  PubMed  Google Scholar 

  73. •• Satoh A, Iijima KM (2019) Roles of tau pathology in the locus coeruleus (LC) in age-associated pathophysiology and Alzheimer’s disease pathogenesis: Potential strategies to protect the LC against aging. Brain Res 1702:17–28. Review discusses the onset of tau pathology in the LC as well as possible protective measures.

    CAS  PubMed  Google Scholar 

  74. Rentz DM, Mormino EC, Papp KV, Betensky RA, Sperling RA, Johnson KA. Cognitive resilience in clinical and preclinical Alzheimer’s disease: the Association of Amyloid and Tau Burden on cognitive performance. Brain Imaging Behav. 2017;11:383–90.

    PubMed  PubMed Central  Google Scholar 

  75. Lockhart SN, Schöll M, Baker SL, et al. Amyloid and tau PET demonstrate region-specific associations in normal older people. Neuroimage. 2017;150:191–9.

    CAS  PubMed  Google Scholar 

  76. Donohue MC, Sperling RA, Petersen R, Sun CK, Weiner M, Aisen PS. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA - J Am Med Assoc. 2017;317:2305–16.

    CAS  Google Scholar 

  77. Kelly SC, He B, Perez SE, Ginsberg SD, Mufson EJ, Counts SE. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol Commun. 2017;5:8.

    PubMed  PubMed Central  Google Scholar 

  78. Mather M, Harley CW. The locus coeruleus: essential for maintaining cognitive function and the aging brain. Trends Cogn Sci. 2016;20:214–26.

    PubMed  PubMed Central  Google Scholar 

  79. Phillips C, Fahimi A, Das D, Mojabi SF, Ponnusamy R, Salehi A. Noradrenergic system in down syndrome and Alzheimer’s disease a target for therapy. Curr Alzheimer Res. 2016;13:68–83.

    CAS  PubMed  Google Scholar 

  80. Lupton MK, Strike L, Hansell NK, et al. The effect of increased genetic risk for Alzheimer’s disease on hippocampal and amygdala volume. Neurobiol Aging. 2016;40:68–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. •• Nelson PT, Abner EL, Patel E, et al (2018) The amygdala as a locus of pathologic misfolding in neurodegenerative diseases. J Neuropathol Exp Neurol 77:2–20. The amygdala may be an early site of protein misfolding, which can cause and/or exercerbate a host of neurodegeenrative disorders.

    CAS  PubMed  Google Scholar 

  82. Nebes RD, Butters MA, Mulsant BH, Pollock BG, Zmuda MD, Houck PR, Reynolds CF. Decreased working memory and processing speed mediate cognitive impairment in geriatric depression. Psychol Med. 2000;30:679–91.

    CAS  PubMed  Google Scholar 

  83. Shimoda K, Kimura M, Yokota M, Okubo Y. Comparison of regional gray matter volume abnormalities in Alzheimer’s disease and late life depression with hippocampal atrophy using VSRAD analysis: a voxel-based morphometry study. Psychiatry Res - Neuroimaging. 2015;232:71–5.

    Google Scholar 

  84. Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci. 2007;10:1110–5.

    CAS  PubMed  Google Scholar 

  85. Leaver AM, Yang H, Siddarth P, Vlasova RM, Krause B, St. Cyr N, Narr KL, Lavretsky H. Resilience and amygdala function in older healthy and depressed adults. J Affect Disord. 2018;237:27–34.

    PubMed  PubMed Central  Google Scholar 

  86. • Huffman J, Taylor GT: Stress, neurogenesis, and mood. In: Paul HR, Salminen LE, Heaps J, Cohen LM, editors. Wiley Encycl. Heal. Psychol. Hoboken: Wiley; 2020. Describes how GCs, HPA axis dysregulation, and reduced DG neurogenesis lead to depressive symptoms.

  87. Leal SL, Noche JA, Murray EA, Yassa MA. Age-related individual variability in memory performance is associated with amygdala-hippocampal circuit function and emotional pattern separation. Neurobiol Aging. 2017;49:9–19.

    PubMed  Google Scholar 

  88. Dillon DG. The neuroscience of positive memory deficits in depression. Front Psychol. 2015;6:1295.

    PubMed  PubMed Central  Google Scholar 

  89. Yamamoto T, Toki S, Siegle GJ, et al. Increased amygdala reactivity following early life stress: a potential resilience enhancer role. BMC Psychiatry. 2017;17:1–11.

    Google Scholar 

  90. Rapp MA, Schnaider-Beeri M, Grossman HT, Sano M, Perl DP, Purohit DP, Gorman JM, Haroutunian V. Increased hippocampal plaques and tangles in patients with Alzheimer disease with a lifetime history of major depression. Arch Gen Psychiatry. 2006;63:161–7.

    PubMed  Google Scholar 

  91. Mahgoub N, Alexopoulos GS. Amyloid hypothesis: is there a role for antiamyloid treatment in late-life depression? Am J Geriatr Psychiatry. 2016;24:239–47.

    PubMed  PubMed Central  Google Scholar 

  92. •• Dafsari FS, Jessen F (2020) Depression—an underrecognized target for prevention of dementia in Alzheimer’s disease. Transl Psychiatry 10:1–13. Describes the potential of antidepressants for reducing AD pathology and improving cognitive outcomes in AD patients.

    Google Scholar 

  93. Papakostas GI, Thase ME, Fava M, Nelson JC, Shelton RC. Are Antidepressant drugs that combine serotonergic and noradrenergic mechanisms of action more effective than the selective serotonin reuptake inhibitors in treating major depressive disorder? A Meta-analysis of Studies of Newer Agents. Biol Psychiatry. 2007;62:1217–27.

    CAS  PubMed  Google Scholar 

  94. Gross JJ. The emerging field of emotion regulation: an integrative review. Rev Gen Psychol. 1998;2:271–99.

    Google Scholar 

  95. Urry HL, Gross JJ. Emotion regulation in older age. Curr Dir Psychol Sci. 2010;19:352–7.

    Google Scholar 

  96. Masumoto K, Taishi N, Shiozaki M. Age and gender differences in relationships among emotion regulation, mood, and mental health. Gerontol Geriatr Med. 2016;2:2333721416637022.

    PubMed  PubMed Central  Google Scholar 

  97. Nashiro K, Sakaki M, Mather M. Age differences in brain activity during emotion processing: reflections of age-related decline or increased emotion regulation? Gerontology. 2012;58:156–63.

    PubMed  Google Scholar 

  98. Heffner KL, Quiñones MM, Gallegos AM, Crean HF, Lin F, Suhr JA. Subjective memory in adults over 50 years of age: associations with affective and physiological markers of emotion regulation. Aging Ment Heal. 2021. https://doi.org/10.1080/13607863.2021.1904829.

    Article  Google Scholar 

  99. St. Jacques PL, Bessette-Symons B, Cabeza R. Functional neuroimaging studies of aging and emotion: fronto-amygdalar differences during emotional perception and episodic memory. J Int Neuropsychol Soc. 2009;15:819–25.

    PubMed  PubMed Central  Google Scholar 

  100. Katsumi Y, Dolcos S, Dixon RA, Fabiani M, Stine-Morrow EAL, Dolcos F. Immediate and long-term effects of emotional suppression in aging: a functional magnetic resonance imaging investigation. Psychol Aging. 2020;35:676–96.

    PubMed  Google Scholar 

  101. Holland AC, Kensinger EA. An fMRI investigation of the cognitive reappraisal of negative memories. Neuropsychologia. 2013;51:2389–400.

    PubMed  PubMed Central  Google Scholar 

  102. Denny BT, Inhoff MC, Zerubavel N, Davachi L, Ochsner KN. Getting over it: long-lasting effects of emotion regulation on amygdala response. Psychol Sci. 2015;26:1377–88.

    PubMed  Google Scholar 

  103. Denny BT, Ochsner KN. Behavioral effects of longitudinal training in cognitive reappraisal. Emotion. 2014;14:425–33.

    PubMed  Google Scholar 

  104. Kross E, Ayduk O. Self-distancing: theory, research, and current directions. Adv Exp Soc Psychol. 2017;55:81–136.

    Google Scholar 

  105. Nowlan JS, Wuthrich VM, Rapee RM. Positive reappraisal in older adults: a systematic literature review. Aging Ment Heal. 2014;19:475–84.

    Google Scholar 

  106. Carr SM, Rickard NS. The use of emotionally arousing music to enhance memory for subsequently presented images. Psychol Music. 2016;44:1145–57.

    Google Scholar 

  107. • Särkämö T (2018) Cognitive, emotional, and neural benefits of musical leisure activities in aging and neurological rehabilitation: A critical review. Ann Phys Rehabil Med 61:414–418. Review of the beneficial effects of music on memory in aging.

    PubMed  Google Scholar 

  108. Diaz Abrahan V, Shifres F, Justel N. Impact of music-based intervention on verbal memory: an experimental behavioral study with older adults. Cogn Process. 2021;22:117–30.

    PubMed  Google Scholar 

  109. Ward EV, Isac A, Donnelly M, Van Puyvelde M, Franco F. Memory improvement in aging as a function of exposure to mood-matching music. Acta Psychol. 2021;212:103206.

    Google Scholar 

  110. Peck KJ, Girard TA, Russo FA, Fiocco AJ. Music and memory in Alzheimer’s disease and the potential underlying mechanisms. J Alzheimer’s Dis. 2016;51:949–59.

    Google Scholar 

  111. Cuddy LL, Sikka R, Vanstone A. Preservation of musical memory and engagement in healthy aging and Alzheimer’s disease. Ann N Y Acad Sci. 2015;1337:223–31.

    PubMed  Google Scholar 

  112. Hirokawa E, Ohira H. The effects of music listening after a stressful task on immune functions, neuroendocrine responses, and emotional states in college students. J Music Ther. 2003;40:189–211.

    PubMed  Google Scholar 

  113. Koelsch S. Towards a neural basis of music-evoked emotions. Trends Cogn Sci. 2010;14:131–7.

    PubMed  Google Scholar 

  114. Ford JH, Rubin DC, Giovanello KS. The effects of song familiarity and age on phenomenological characteristics and neural recruitment during autobiographical memory retrieval. Psychomusicology Music Mind, Brain. 2016;26:199–210.

    Google Scholar 

  115. • Leggieri M, Thaut MH, Fornazzari L, Schweizer TA, Barfett J, Munoz DG, Fischer CE (2019) Music intervention approaches for Alzheimer’s disease: A review of the literature. Front Neurosci 13:132. Review detailing how individualistic music interventions can be used to improve behavioral and cognitive outcomes of AD patients.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie L. Leal.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Human and Animal Rights and Informed Consent

All reported studies and experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Social Cognition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, L.A., Leal, S.L. Interactions of Emotion and Memory in the Aging Brain: Neural and Psychological Correlates. Curr Behav Neurosci Rep 9, 47–57 (2022). https://doi.org/10.1007/s40473-021-00245-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-021-00245-6

Keywords

Navigation