Skip to main content

Advertisement

Log in

Epigenetic Research in Neuropsychiatric Disorders: the “Tissue Issue”

  • Genetics and Neuroscience (B Maher, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Evidence has linked neuropsychiatric disorders with epigenetic marks as either a biomarker of disease, biomarker of exposure, or mechanism of disease processes. Neuropsychiatric epidemiologic studies using either target brain tissue or surrogate blood tissue each have methodological challenges and distinct advantages.

Recent findings

Brain tissue studies are challenged by small sample sizes of cases and controls, incomplete phenotyping, post-mortem timing, and cellular heterogeneity, but the use of a primary disease relevant tissue is critical. Blood-based studies have access to much larger sample sizes and more replication opportunities, as well as the potential for longitudinal measurements, both prior to onset and during the course of treatments. Yet, blood studies also are challenged by cell-type heterogeneity, and many question the validity of using peripheral tissues as a brain biomarker. Emerging evidence suggests that these limitations to blood-based epigenetic studies are surmountable, but confirmation in target tissue remains important.

Summary

Epigenetic mechanisms have the potential to help elucidate biology connecting experiential risk factors with neuropsychiatric disease manifestation. Cross-tissue studies as well as advanced epidemiologic methods should be employed to more effectively conduct neuropsychiatric epigenetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.

    Article  CAS  PubMed  Google Scholar 

  2. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.

    Article  CAS  PubMed  Google Scholar 

  3. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447(7143):433–40.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem. 2012;23(8):853–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bjornsson HT, Fallin MD, Feinberg AP. An integrated epigenetic and genetic approach to common human disease. Trends Gen. 2004;20(8):350–8.

    Article  CAS  Google Scholar 

  6. Ladd-Acosta C. Epigenetic signatures as biomarkers of exposure. Curr Environ Health Rep. 2015;2(2):117–25.

    Article  CAS  PubMed  Google Scholar 

  7. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. 2014;5:5592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. Can Med Assoc J. 2006;174(3):341–8.

    Article  Google Scholar 

  9. Hsieh J, Eisch AJ. Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: Unraveling the genome to understand the mind. Neurobiol Dis. 2010;39(1):73–84.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sweatt JD. The emerging field of neuroepigenetics. Neuron. 2013;80(3):624–32.

    Article  CAS  PubMed  Google Scholar 

  11. Loke YJ, Hannan AJ, Craig JM. The Role of Epigenetic Change in Autism Spectrum Disorders. Front Neurol. 2015;6:107.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abdolmaleky HM, Zhou JR, Thiagalingam S. An update on the epigenetics of psychotic diseases and autism. Epigenomics. 2015;7(3):427–49.

    Article  CAS  PubMed  Google Scholar 

  13. Ibi D, Gonzalez-Maeso J. Epigenetic signaling in schizophrenia. Cell Signal. 2015;27(10):2131–6.

    Article  CAS  PubMed  Google Scholar 

  14. Shorter KR, Miller BH. Epigenetic mechanisms in schizophrenia. Prog Biophys Mol Biol. 2015;118(1-2):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vinkers CH, Kalafateli AL, Rutten BP, Kas MJ, Kaminsky Z, Turner JD, et al. Traumatic stress and human DNA methylation: a critical review. Epigenomics. 2015;7(4):593–608.

    Article  CAS  PubMed  Google Scholar 

  16. Cadet JL, McCoy MT, Jayanthi S. Epigenetics and Addiction. Clin Pharmacol Ther. 2016;99(5):502–511.

  17. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012;13(6):R43. Blood and brain DNA methylation comparison, including mQTLs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohammad-Rezazadeh I, Frohlich J, Loo SK, Jeste SS. Brain connectivity in autism spectrum disorder. Curr Opin Neurol. 2016;29(2):137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods. 2016;13(3):229–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc. 2016;11(3):499–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics. 2013;8(3):290–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Montano CM, Irizarry RA, Kaufmann WE, Talbot K, Gur RE, Feinberg AP, et al. Measuring cell-type specific differential methylation in human brain tissue. Genome Biol. 2013;14(8):R94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016;19(2):335–46.

    Article  CAS  PubMed  Google Scholar 

  24. Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A. 2015;112(23):7285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A, et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science. 2015;350(6256):94–8.

    Article  CAS  PubMed  Google Scholar 

  26. Fuzik J, Zeisel A, Mate Z, Calvigioni D, Yanagawa Y, Szabo G, et al. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol. 2016;34(2):175–83.

    Article  CAS  PubMed  Google Scholar 

  27. Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci. 2016;19(1):102–10.

    CAS  PubMed  Google Scholar 

  28. Heyward FD, Gilliam D, Coleman MA, Gavin CF, Wang J, Kaas G, et al. Obesity Weighs down Memory through a Mechanism Involving the Neuroepigenetic Dysregulation of Sirt1. J Neurosci. 2016;36(4):1324–35.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barton AJ, Pearson RC, Najlerahim A, Harrison PJ. Pre- and postmortem influences on brain RNA. J Neurochem. 1993;61(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  30. Harrison PJ, Heath PR, Eastwood SL, Burnet PW, McDonald B, Pearson RC. The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett. 1995;200(3):151–4.

    Article  CAS  PubMed  Google Scholar 

  31. Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV, et al. Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet. 2004;13(6):609–16.

    Article  CAS  PubMed  Google Scholar 

  32. Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J, et al. Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry. 2004;55(4):346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ernst C, McGowan PO, Deleva V, Meaney MJ, Szyf M, Turecki G. The effects of pH on DNA methylation state: In vitro and post-mortem brain studies. J Neurosci Methods. 2008;174(1):123–5.

    Article  CAS  PubMed  Google Scholar 

  34. Pidsley R, Mill J. Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biol Psychiatry. 2011;69(2):146–56.

    Article  PubMed  Google Scholar 

  35. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hansen KD, Sabunciyan S, Langmead B, Nagy N, Curley R, Klein G, et al. Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization. Genome Res. 2014;24(2):177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sarachana T, Xu M, Wu RC, Hu VW. Sex hormones in autism: androgens and estrogens differentially and reciprocally regulate RORA, a novel candidate gene for autism. PLoS One. 2011;6(2):e17116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010;24(8):3036–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lowe R, Gemma C, Beyan H, Hawa MI, Bazeos A, Leslie RD, et al. Buccals are likely to be a more informative surrogate tissue than blood for epigenome-wide association studies. Epigenetics. 2013;8(4):445–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prilutsky D, Palmer NP, Smedemark-Margulies N, Schlaeger TM, Margulies DM, Kohane IS. iPSC-derived neurons as a higher-throughput readout for autism: promises and pitfalls. Trends Mol Med. 2014;20(2):91–104.

    Article  CAS  PubMed  Google Scholar 

  41. Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol. 2011;29(12):1117–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471(7336):68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cahan P, Daley GQ. Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol. 2013;14(6):357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Newschaffer CJ, Croen LA, Fallin MD, Hertz-Picciotto I, Nguyen DV, Lee NL, et al. Infant siblings and the investigation of autism risk factors. J Neurodev Disord. 2012;4(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.

    Article  CAS  Google Scholar 

  46. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28(10):1045–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hannon E, Lunnon K, Schalkwyk L, Mill J. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics. 2015;10(11):1024–32. Cross-tissue blood and brain DNA methylation comparisons.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Farre P, Jones MJ, Meaney MJ, Emberly E, Turecki G, Kobor MS. Concordant and discordant DNA methylation signatures of aging in human blood and brain. Epigenetics Chromatin. 2015;8:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wen L, Li X, Yan L, Tan Y, Li R, Zhao Y, et al. Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain. Genome Biol. 2014;15(3):R49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86. Estimate cell proportions from a mixed cell DNA methylation measure.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15(2):R31.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bakulski KM, Feinberg JI, Andrews SV, Yang J, Brown S, McKenney S, et al. DNA methylation of cord blood cell types: applications for mixed cell birth studies. Epigenetics. 2016;11(5):354–362.

  53. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013;31(2):142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16(8):469–86.

    Article  CAS  PubMed  Google Scholar 

  55. Muller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci. 2015;9:372.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rosenblat JD, McIntyre RS. Bipolar Disorder and Inflammation. Psychiatr Clin North Am. 2016;39(1):125–37.

    Article  PubMed  Google Scholar 

  57. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL, et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 2010;6(5):e1000952.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gamazon ER, Badner JA, Cheng L, Zhang C, Zhang D, Cox NJ, et al. Enrichment of cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants. Mol Psychiatry. 2013;18(3):340–6.

    Article  CAS  PubMed  Google Scholar 

  59. Marzi SJ, Meaburn EL, Dempster EL, Lunnon K, Paya-Cano JL, Smith RG, et al. Tissue-specific patterns of allelically-skewed DNA methylation. Epigenetics. 2016;11(1):24–35.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Smith AK, Kilaru V, Kocak M, Almli LM, Mercer KB, Ressler KJ, et al. Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC Genomics. 2014;15:145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hannon E, Spiers H, Viana J, Pidsley R, Burrage J, Murphy TM, et al. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nat Neurosci. 2016;19(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  62. Masliah E, Dumaop W, Galasko D, Desplats P. Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics. 2013;8(10):1030–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barault L, Ellsworth RE, Harris HR, Valente AL, Shriver CD, Michels KB. Leukocyte DNA as surrogate for the evaluation of imprinted Loci methylation in mammary tissue DNA. PLoS One. 2013;8(2):e55896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bartolomei MS, Ferguson-Smith AC. Mammalian genomic imprinting. Cold Spring Harb Perspect Biol. 2011. doi:10.1101/cshperspect.a002592.

  65. Walton E, Hass J, Liu J, Roffman JL, Bernardoni F, Roessner V, et al. Correspondence of DNA Methylation Between Blood and Brain Tissue and Its Application to Schizophrenia Research. Schizophr Bull. 2016;42(2):406–14.

    Article  PubMed  Google Scholar 

  66. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012;13(10):R97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Byun HM, Siegmund KD, Pan F, Weisenberger DJ, Kanel G, Laird PW, et al. Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum Mol Genet. 2009;18(24):4808–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma B, Wilker EH, Willis-Owen SA, Byun HM, Wong KC, Motta V, et al. Predicting DNA methylation level across human tissues. Nucleic Acids Res. 2014;42(6):3515–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zwaigenbaum L, Bauman ML, Choueiri R, Fein D, Kasari C, Pierce K, et al. Early Identification and Interventions for Autism Spectrum Disorder: Executive Summary. Pediatrics. 2015;136 Suppl 1:S1–9.

    Article  PubMed  Google Scholar 

  70. Bollati V, Baccarelli A. Environmental epigenetics. Heredity. 2010;105(1):105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, et al. A Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study. Environ Health Perspect. 2016. doi:10.1289/ehp.1509966.

  72. Bakulski KM, Lee H, Feinberg JI, Wells EM, Brown S, Herbstman JB, et al. Prenatal mercury concentration is associated with changes in DNA methylation at TCEANC2 in newborns. Int J Epidemiol. 2015;44(4):1249–62.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Joubert BR, Herman T, Felix JF, Bohlin J, Ligthart S, Beckett E, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. 2016. doi:10.1038/ncomms10577.

  74. Joubert Bonnie R, Felix Janine F, Yousefi P, Bakulski Kelly M, Just Allan C, Breton C, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680–696.

  75. Ewald ER, Wand GS, Seifuddin F, Yang X, Tamashiro KL, Potash JB, et al. Alterations in DNA methylation of Fkbp5 as a determinant of blood-brain correlation of glucocorticoid exposure. Psychoneuroendocrinology. 2014;44:112–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kundakovic M, Gudsnuk K, Herbstman JB, Tang D, Perera FP, Champagne FA. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A. 2015;112(22):6807–13.

    Article  CAS  PubMed  Google Scholar 

  77. Ursini G, Bollati V, Fazio L, Porcelli A, Iacovelli L, Catalani A, et al. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J Neurosci. 2011;31(18):6692–8.

    Article  CAS  PubMed  Google Scholar 

  78. Sabunciyan S, Aryee MJ, Irizarry RA, Rongione M, Webster MJ, Kaufman WE, et al. Genome-wide DNA methylation scan in major depressive disorder. PLoS One. 2012;7(4):e34451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gregory SG, Connelly JJ, Towers AJ, Johnson J, Biscocho D, Markunas CA, et al. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med. 2009;7:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health. 2005;95 Suppl 1:S144–50.

    Article  PubMed  Google Scholar 

  81. Relton CL, Davey SG. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol. 2012;41(1):161–76.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mackinnon DP. Integrating Mediators and Moderators in Research Design. Res Soc Work Pract. 2011;21(6):675–81.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bakulski KM, Fallin MD. Epigenetic epidemiology: promises for public health research. Environ Mol Mutagen. 2014;55(3):171–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ladd-Acosta C, Fallin MD. The role of epigenetics in genetic and environmental epidemiology. Epigenomics. 2016;8(2):271–83.

    Article  CAS  PubMed  Google Scholar 

  85. Houseman EA, Kim S, Kelsey KT, Wiencke JK. DNA Methylation in Whole Blood: Uses and Challenges. Curr Environ Health Rep. 2015;2(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  86. Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics. 2006;1(4):e1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82(3):696–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Abdolmaleky HM, Yaqubi S, Papageorgis P, Lambert AW, Ozturk S, Sivaraman V, et al. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr Res. 2011;129(2-3):183–90.

    Article  PubMed  Google Scholar 

  89. James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP. Complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum. Transl Psychiatry. 2013;3:e232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ladd-Acosta C, Hansen KD, Briem E, Fallin MD, Kaufmann WE, Feinberg AP. Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry. 2014;19(8):862–71.

    Article  CAS  PubMed  Google Scholar 

  91. Zhu L, Wang X, Li XL, Towers A, Cao X, Wang P, et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet. 2014;23(6):1563–78.

    Article  PubMed  CAS  Google Scholar 

  92. Nardone S, Sams DS, Reuveni E, Getselter D, Oron O, Karpuj M, et al. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl Psychiatry. 2014;4:e433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VL, et al. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry. 2014;4(1):e339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pidsley R, Viana J, Hannon E, Spiers H, Troakes C, Al-Saraj S, et al. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biol. 2014;15(10):483.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jaffe AE, Gao Y, Deep-Soboslay A, Tao R, Hyde TM, Weinberger DR, et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat Neurosci. 2016;19(1):40–7. Large brain tissue study considering development.

    Article  CAS  PubMed  Google Scholar 

  96. Pandey GN, Rizavi HS, Zhang H, Bhaumik R, Ren X. The Expression of the Suicide-Associated Gene SKA2 is Decreased in the Prefrontal Cortex of Suicide Victims, but Not of Non-Suicidal Patients. Int J Neuropsychopharmacol. 2016.

  97. Carrard A, Salzmann A, Malafosse A, Karege F. Increased DNA methylation status of the serotonin receptor 5HTR1A gene promoter in schizophrenia and bipolar disorder. J Affect Disord. 2011;132(3):450–3.

    Article  CAS  PubMed  Google Scholar 

  98. Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet. 2011;20(24):4786–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rusiecki JA, Byrne C, Galdzicki Z, Srikantan V, Chen L, Poulin M, et al. PTSD and DNA Methylation in Select Immune Function Gene Promoter Regions: A Repeated Measures Case-Control Study of U.S. Military Service Members. Front Psychiatry. 2013;4:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nishioka M, Bundo M, Koike S, Takizawa R, Kakiuchi C, Araki T, et al. Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. J Hum Genet. 2013;58(2):91–7.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang H, Wang F, Kranzler HR, Zhao H, Gelernter J. Profiling of childhood adversity-associated DNA methylation changes in alcoholic patients and healthy controls. PLoS One. 2013;8(6):e65648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Aldinger KA, Plummer JT, Levitt P. Comparative DNA methylation among females with neurodevelopmental disorders and seizures identifies TAC1 as a MeCP2 target gene. J Neurodev Disord. 2013;5(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wong CC, Meaburn EL, Ronald A, Price TS, Jeffries AR, Schalkwyk LC, et al. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry. 2014;19(4):495–503.

    Article  CAS  PubMed  Google Scholar 

  104. Dempster EL, Wong CC, Lester KJ, Burrage J, Gregory AM, Mill J, et al. Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biol Psychiatry. 2014;76(12):977–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fisher HL, Murphy TM, Arseneault L, Caspi A, Moffitt TE, Viana J, et al. Methylomic analysis of monozygotic twins discordant for childhood psychotic symptoms. Epigenetics. 2015;10(11):1014–23.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kang HJ, Kim JM, Kim SY, Kim SW, Shin IS, Kim HR, et al. A Longitudinal Study of BDNF Promoter Methylation and Depression in Breast Cancer. Psychiatry Investig. 2015;12(4):523–31.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kim D, Kubzansky LD, Baccarelli A, Sparrow D, Spiro 3rd A, Tarantini L, et al. Psychological factors and DNA methylation of genes related to immune/inflammatory system markers: the VA Normative Aging Study. BMJ Open. 2016;6(1):e009790.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kahl KG, Georgi K, Bleich S, Muschler M, Hillemacher T, Hilfiker-Kleinert D, et al. Altered DNA methylation of glucose transporter 1 and glucose transporter 4 in patients with major depressive disorder. J Psychiatr Res. 2016;76:66–73.

    Article  PubMed  Google Scholar 

  109. Montano C, Taub MA, Jaffe A, Briem E, Feinberg JI, Trygvadottir R, et al. Association of DNA methylation differences with schizophrenia in an epigenome-wide association study. JAMA Psychiatry. 2016;73(5):506–14. Large, well replicated surrogate tissue study.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Daniele Fallin.

Ethics declarations

Conflict of Interest

Dr. Kelly M. Bakulski, Dr. Alycia Halladay, Dr. Valerie W. Hu, Dr. Jonathan Mill, and Dr. M. Daniele Fallin declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding Sources

Drs. Bakulski and Fallin were supported by the National Institute of Environmental Health Sciences (ES017646). Dr. Hu was supported by the National Institute of Environmental Health Sciences (ES023061). Dr. Mill was supported by the UK Medical Research Council (MRC; MR/K013807/1) and the US National Institutes of Health (AG036039).

Additional information

This article is part of the Topical Collection on Genetics and Neuroscience

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulski, K.M., Halladay, A., Hu, V.W. et al. Epigenetic Research in Neuropsychiatric Disorders: the “Tissue Issue”. Curr Behav Neurosci Rep 3, 264–274 (2016). https://doi.org/10.1007/s40473-016-0083-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-016-0083-4

Keywords

Navigation