Skip to main content
Log in

Aerobic Exercise in People with Schizophrenia: Neural and Neurocognitive Benefits

  • Psychosis (A Ahmed, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Schizophrenia is characterized by extensive neurocognitive deficits, which are linked to greater disability, poorer functional outcome, and have been suggested to impact daily functioning more than clinical symptoms. Aerobic exercise (AE) has emerged as a potential intervention. This review examines the impact of AE on brain structure and function along with neurocognitive performance in individuals with schizophrenia. Preliminary evidence indicates that AE can increase hippocampal volume and cortical thickness, in addition to exerting a neuroprotective effect against hippocampal volume decrease and cortical thinning. There is also evidence that AE is able to significantly increase serum brain-derived neurotrophic factor (BDNF) levels, which are implicated in neurogenesis, neuroplasticity, and cognitive improvement. Finally, evidence suggests that AE plays a significant role in improving overall cognition, including improvements in processing speed, working memory, and visual learning. The authors discuss the implications of the findings and provide recommendations for future research and areas of inquiry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Gold JM, Harvey PD. Cognitive deficits in schizophrenia. Psychiatr Clin N Am. 1993;16:295–312.

    CAS  Google Scholar 

  2. Harvey PD, Keefe RS. Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am J Psychiatr Am Psychiatri Publ. 2001;158:176–84.

    Article  CAS  Google Scholar 

  3. Jones P, Rodgers B, Murray R, Marmot M. Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet. 1994;344:1398–402.

    Article  CAS  PubMed  Google Scholar 

  4. O’Carroll R. Cognitive impairment in schizophrenia. Adv Psychiatr Treat. 2000;6:161–8.

    Article  Google Scholar 

  5. Bowie CR, Harvey PD. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat. 2006;2:531–6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barch DM, Keefe RSE. Anticipating DSM-V: opportunities and challenges for cognition and psychosis. Schizophr Bull. 2010;36:43–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Velligan DI, Mahurin RK, Diamond PL, Hazleton BC, Eckert SL, Miller AL. The functional significance of symptomatology and cognitive function in schizophrenia. Schizophr Res. 1997;25:21–31.

    Article  CAS  PubMed  Google Scholar 

  8. Bowie CR, Leung WW, Reichenberg A, McClure MM, Patterson TL, Heaton RK, et al. Predicting schizophrenia patients’ real-world behavior with specific neuropsychological and functional capacity measures. Biol Psychiatry. 2008;63:505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Addington J, Addington D. Neurocognitive and social functioning in schizophrenia: a 2.5 year follow-up study. Schizophr Res. 2000;44:47–56.

    Article  CAS  PubMed  Google Scholar 

  10. Addington J, Addington D. Neurocognitive and social functioning in schizophrenia. Schizophr Bull. 1999;25:173–82.

    Article  CAS  PubMed  Google Scholar 

  11. Midin M, Razali R, Zamzam R, Fernandez A, Hum LC, Shah SA, et al. Clinical and cognitive correlates of employment among patients with schizophrenia: a cross-sectional study in Malaysia. Int J Ment Health Syst. 2011;5:14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sánchez P, Ojeda N, Peña J, Elizagárate E, Yoller AB, Gutiérrez M, et al. Predictors of longitudinal changes in schizophrenia: the role of processing speed. J Clin Psychiatry. 2009;70:888–96.

    Article  PubMed  Google Scholar 

  13. Zaragoza Domingo S, Bobes J, García-Portilla M-P, Morralla C. Cognitive Performance associated to functional outcomes in stable outpatients with schizophrenia. Schizophr Res Cogn. 2015;2:146–58.

    Article  Google Scholar 

  14. Milev P, Ho B-C, Arndt S, Andreasen NC. Predictive values of neurocognition and negative symptoms on functional outcome in schizophrenia: a longitudinal first-episode study with 7-year follow-up. Am J Psychiatry. 2005;162:495–506.

    Article  PubMed  Google Scholar 

  15. Lepage M, Bodnar M, Bowie CR. Neurocognition: clinical and functional outcomes in schizophrenia. Can J Psychiatry. 2014;59:5–12.

    PubMed  PubMed Central  Google Scholar 

  16. Gold JM. Cognitive deficits as treatment targets in schizophrenia. Schizophr Res. 2004;72:21–8.

    Article  PubMed  Google Scholar 

  17. Antonova E, Sharma T, Morris R, Kumari V. The relationship between brain structure and neurocognition in schizophrenia: a selective review. Schizophr Res. 2004;70:117–45.

    Article  PubMed  Google Scholar 

  18. Fitzsimmons J, Kubicki M, Shenton ME. Review of functional and anatomical brain connectivity findings in schizophrenia. Curr Opin Psychiatr. 2013;26:172–87.

    Article  Google Scholar 

  19. Reid MA, White DM, Kraguljac NV, Lahti AC. A combined diffusion tensor imaging and magnetic resonance spectroscopy study of patients with schizophrenia. Schizophr Res. 2016;170:341–50.

    Article  PubMed  Google Scholar 

  20. Cahn W, van Haren NEM, Hulshoff Pol HE, Schnack HG, Caspers E, Laponder DAJ, et al. Brain volume changes in the first year of illness and 5-year outcome of schizophrenia. Br J Psychiatry. 2006;189:381–2.

    Article  CAS  PubMed  Google Scholar 

  21. Hulshoff Pol HE, Schnack HG, Bertens MGBC, van Haren NEM, van der Tweel I, Staal WG, et al. Volume changes in gray matter in patients with schizophrenia. Am J Psychiatry. 2002;159:244–50.

    Article  PubMed  Google Scholar 

  22. Fusar-Poli P, Byrne M, Valmaggia L, Day F, Tabraham P, Johns L, et al. Social dysfunction predicts two years clinical outcome in people at ultra high risk for psychosis. J Psychiatr Res Elsevier Ltd. 2010;44:294–301.

    Article  CAS  Google Scholar 

  23. Zipursky RB, Agid O. Recovery, not progressive deterioration, should be the expectation in schizophrenia. World Psychiatry. 2015;14:94–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Buckley PF. Neuroimaging of schizophrenia: structural abnormalities and pathophysiological implications. Neuropsychiatr Dis Treat. 2005;1:193–204.

    PubMed  PubMed Central  Google Scholar 

  25. Nieto R, Kukuljan M, Silva H. BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry. 2013;4:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ. Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry. 2011;16:960–72.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XY, Liang J, Chen DC, Xiu MH, De YF, Kosten TA, et al. Low BDNF is associated with cognitive impairment in chronic patients with schizophrenia. Psychopharmacology. 2012;222:277–84.

    Article  CAS  PubMed  Google Scholar 

  28. Rizos E, Papathanasiou MA, Michalopoulou PG, Laskos E, Mazioti A, Kastania A, et al. A longitudinal study of alterations of hippocampal volumes and serum BDNF levels in association to atypical antipsychotics in a sample of first-episode patients with schizophrenia. Hashimoto K, editor. PLoS One. 2014;9:e87997.

  29. Woodward ND, Purdon SE, Meltzer HY, Zald DH. A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int J Neuropsychopharmacol. 2005;8:457–72.

    Article  CAS  PubMed  Google Scholar 

  30. Keefe RSE, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, et al. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry. 2007;64:633–47.

    Article  CAS  PubMed  Google Scholar 

  31. Buchanan RW, Keefe RS, Lieberman JA, Barch DM, Csernansky JG, Goff DC, et al. A randomized clinical trial of MK-0777 for the treatment of cognitive impairments in people with schizophrenia. Biol Psychiatry. 2011;69:442–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Javitt DC, Buchanan RW, Keefe RSE, Kern R, McMahon RP, Green MF, et al. Effect of the neuroprotective peptide davunetide (AL-108) on cognition and functional capacity in schizophrenia. Schizophr Res. 2012;136:25–31.

    Article  PubMed  Google Scholar 

  33. Egan FM, Zhao X, Gottwald R, Harper-Mozley L, Zhang Y, Snavely D, et al. Randomized crossover study of the histamine H3 inverse agonist MK-0249 for the treatment of cognitive impairment in patients with schizophrenia. Schizophr Res. 2013;146:224–30.

    Article  Google Scholar 

  34. Haig GM, Bain E, Robieson W, Othman AA, Baker J, Lenz RA. A randomized trial of the efficacy and safety of the H3 antagonist ABT-288 in cognitive impairment associated with schizophrenia. Schizophr Bull. 2014;40:1433–42.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Levkovitz Y, Mendlovich S, Riwkes S, Braw Y, Levkovitch-Verbin H, Gal G, et al. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J. Clin. Psychiatry. Physicians Postgraduate Press, Inc.; 2010;71:138–49.

  36. Berger GE, Proffitt T-M, McConchie M, Yuen H, Wood SJ, Amminger GP, et al. Ethyl-eicosapentaenoic acid in first-episode psychosis: a randomized, placebo-controlled trial. J Clin Psychiatry. 2007;68:1867–75.

    Article  CAS  PubMed  Google Scholar 

  37. Wykes T, Newton E, Landau S, Rice C, Thompson N, Frangou S. Cognitive remediation therapy (CRT) for young early onset patients with schizophrenia: an exploratory randomized controlled trial. Schizophr Res. 2007;94:221–30.

    Article  PubMed  Google Scholar 

  38. Lee RSC, Redoblado-Hodge MA, Naismith SL, Hermens DF, Porter MA, Hickie IB. Cognitive remediation improves memory and psychosocial functioning in first-episode psychiatric out-patients. Psychol Med. 2013;43:1161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hogarty GE, Flesher S, Ulrich R, Carter M, Greenwald D, Pogue-Geile M, et al. Cognitive enhancement therapy for schizophrenia: effects of a 2-year randomized trial on cognition and behavior. Arch Gen Psychiatry. 2004;61:866–76.

    Article  PubMed  Google Scholar 

  40. Sartory G, Zorn C, Groetzinger G, Windgassen K. Computerized cognitive remediation improves verbal learning and processing speed in schizophrenia. Schizophr Res. 2005;75:219–23.

    Article  PubMed  Google Scholar 

  41. Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P. A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am. J. Psychiatry. American Psychiatric Publishing Arlington, VA; 2011;168:472–85.

  42. Rass O, Forsyth JK, Bolbecker AR, Hetrick WP, Breier A, Lysaker PH, et al. Computer-assisted cognitive remediation for schizophrenia: a randomized single-blind pilot study. Schizophr Res. 2012;139:92–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9:58–65.

    Article  CAS  PubMed  Google Scholar 

  44. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266–70.

    Article  PubMed  Google Scholar 

  45. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96:13427–31.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim T-W, Kang H-S, Park J-K, Lee S-J, Baek S-B, Kim C-J. Voluntary wheel running ameliorates symptoms of MK-801-induced schizophrenia in mice. Mol Med Rep. 2014;10:2924–30.

    CAS  PubMed  Google Scholar 

  47. Liu Y-F, Chen H, Wu C-L, Kuo Y-M, Yu L, Huang A-M, et al. Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J Physiol. 2009;587:3221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alomari MA, Khabour OF, Alzoubi KH, Alzubi MA. Forced and voluntary exercises equally improve spatial learning and memory and hippocampal BDNF levels. Behav Brain Res. 2013;247:34–9.

    Article  CAS  PubMed  Google Scholar 

  49. Leasure JL, Jones M. Forced and voluntary exercise differentially affect brain and behavior. Neuroscience. 2008;156:456–65.

    Article  CAS  PubMed  Google Scholar 

  50. Ke Z, Yip S-P, Li L, Zheng X-X, Tam W-K, Tong K-Y. The effects of voluntary, involuntary, and forced exercises on motor recovery in a stroke rat model. Conf. Proc. … Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2011;2011:8223–6.

  51. DiLorenzo TM, Bargman EP, Stucky-Ropp R, Brassington GS, Frensch PA, LaFontaine T. Long-term effects of aerobic exercise on psychological outcomes. Prev Med (Baltim). 1999;28:75–85.

    Article  CAS  Google Scholar 

  52. Bize R, Johnson JA, Plotnikoff RC. Physical activity level and health-related quality of life in the general adult population: a systematic review. Prev Med. 2007;45:401–15.

    Article  PubMed  Google Scholar 

  53. Penedo FJ, Dahn JR. Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Curr Opin Psychiatry. 2005;18:189–93.

    Article  PubMed  Google Scholar 

  54. van Praag H. Neurogenesis and exercise: past and future directions. NeuroMolecular Med. 2008;10:128–40.

    Article  PubMed  Google Scholar 

  55. van Praag H. Exercise and the brain: something to chew on. Trends Neurosci. 2009;32:283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Guiney H, Machado L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon Bull Rev. 2013;20:73–86.

    Article  PubMed  Google Scholar 

  57. Masley S, Roetzheim R, Gualtieri T. Aerobic exercise enhances cognitive flexibility. J Clin Psychol Med Settings. 2009;16:186–93.

    Article  PubMed  Google Scholar 

  58. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72:239–52.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kimhy D, Vakhrusheva J, Bartels MN, Armstrong HF, Ballon JS, Khan S, et al. Aerobic fitness and body mass index in individuals with schizophrenia: Implications for neurocognition and daily functioning. Psychiatry Res 2014;220:784–91.

  60. Leutwyler H, Hubbard EM, Jeste DV, Miller B, Vinogradov S. Associations of schizophrenia symptoms and neurocognition with physical activity in older adults with schizophrenia. Biol Res Nurs. 2013;16:23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  61. McEwen SC, Hardy A, Ellingson BM, Jarrahi B, Sandhu N, Subotnik KL, et al. Prefrontal and hippocampal brain volume deficits: role of low physical activity on brain plasticity in first-episode schizophrenia patients. J Int Neuropsychol Soc. 2015;21:868–79. While many AE studies are conducted in chronically ill populations, this paper underscores the effects of high vs. low baseline physical activity on brain structure in early phase of schizophrenia.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Armstrong HF, Bartels MN, Paslavski O, Cain D, Shoval HA, Ballon JS, et al. The impact of aerobic exercise training on cardiopulmonary functioning in individuals with schizophrenia. Schizophr. Res. 2016

  63. Vancampfort D, Rosenbaum S, Probst M, Soundy A, Mitchell AJ, De Hert M, et al. Promotion of cardiorespiratory fitness in schizophrenia: a clinical overview and meta-analysis. Acta Psychiatr Scand. 2015;132:131–43.

    Article  CAS  PubMed  Google Scholar 

  64. Pajonk F-GG, Wobrock T, Gruber O, Scherk H, Berner D, Kaizl I, et al. Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry. 2010;67:133–43.

    Article  PubMed  Google Scholar 

  65. Falkai P, Malchow B, Wobrock T, Gruber O, Schmitt A, Honer WG, et al. The effect of aerobic exercise on cortical architecture in patients with chronic schizophrenia: a randomized controlled MRI study. Eur Arch Psychiatry Clin Neurosci. 2013;263:469–73.

    Article  PubMed  Google Scholar 

  66. Deicken RF, Zhou L, Schuff N, Fein G, Weiner MW. Hippocampal neuronal dysfunction in schizophrenia as measured by proton magnetic resonance spectroscopy. Biol Psychiatry 1998;43:483–8.

  67. Heckers S, Konradi C. Hippocampal neurons in schizophrenia. J Neural Transm. 2002;109:891–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sawada K, Barr AM, Nakamura M, Arima K, Young CE, Dwork AJ, et al. Hippocampal complexin proteins and cognitive dysfunction in schizophrenia. Arch Gen Psychiatry. 2005;62:263–72.

    Article  CAS  PubMed  Google Scholar 

  69. Scheewe TW, van Haren NEM, Sarkisyan G, Schnack HG, Brouwer RM, de Glint M, et al. Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls. Eur Neuropsychopharmacol. 2012;c:675–85.

    Google Scholar 

  70. Rosenbaum S, Lagopoulos J, Curtis J, Taylor L, Watkins A, Barry BK, et al. Aerobic exercise intervention in young people with schizophrenia spectrum disorders; improved fitness with no change in hippocampal volume. Psychiatry Res Neuroimaging Elsevier. 2015;232:200–1.

    Article  Google Scholar 

  71. Svatkova A, Mandl RCW, Scheewe TW, Cahn W, Kahn RS, Hulshoff Pol HE. Physical exercise keeps the brain connected: biking increases white matter integrity in patients with schizophrenia and healthy controls. Schizophr Bull. 2015;41:869–78.

    Article  PubMed  Google Scholar 

  72. Malchow B, Keeser D, Keller K, Hasan A, Rauchmann B-S, Kimura H, et al. Effects of endurance training on brain structures in chronic schizophrenia patients and healthy controls. Schizophr. Res. 2015;1–10.

  73. Kimhy D, Lauriola V, Bartels MN, Armstrong HF, Vakhrusheva J, Ballon JS, et al. Aerobic exercise for cognitive deficits in schizophrenia—the impact of frequency, duration, and fidelity with target training intensity. Schizophr Res. 2016. doi:10.1016/j.schres.2016.01.055.

  74. Firth J, Cotter J, Elliott R, French P, Yung AR. A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol. Med. Cambridge University Press; 2015;45:1343–61. This systematic meta-analysis demonstrates important findings regarding the effective dose of exercise required to see substantial changes in neurocognition and functional outcomes.

  75. Kuo FC, Lee CH, Hsieh CH, Kuo P, Chen YC, Hung YJ. Lifestyle modification and behavior therapy effectively reduce body weight and increase serum level of brain-derived neurotrophic factor in obese non-diabetic patients with schizophrenia. Psychiatry Res 2013;209:150–4.

  76. Kim H, Song B, So B, Lee O, Song W, Kim Y. Increase of circulating BDNF levels and its relation to improvement of physical fitness following 12 weeks of combined exercise in chronic patients with schizophrenia: a pilot study. Psychiatry Res 2014;220:792–6.

  77. Buckley PF, Mahadik S, Pillai A, Terry Jr A. Neurotrophins and schizophrenia. Schizophr Res. 2007;94:1–11.

    Article  PubMed  Google Scholar 

  78. Castrén E, Rantamäki T. The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol. 2010;70:289–97.

    Article  PubMed  Google Scholar 

  79. Castrén E, Tanila H. Neurotrophins and dementia—keeping in touch. Neuron. 2006;51:1–3.

    Article  PubMed  Google Scholar 

  80. Silva BA e, Cassilhas RC, Attux C, Cordeiro Q, Gadelha AL, Telles BA, et al. A 20-week program of resistance or concurrent exercise improves symptoms of schizophrenia: results of a blind, randomized controlled trial. Rev. Bras. Psiquiatr. 2015;​37:271–9.

  81. Chen C-C, Huang T-L. Effects of antipsychotics on the serum BDNF levels in schizophrenia. Psychiatry Res. 2011;189:327–30.

    Article  CAS  PubMed  Google Scholar 

  82. Kimhy D, Vakhrusheva J, Bartels MN, Armstrong HF, Ballon JS, Khan S, et al. The impact of aerobic exercise on brain-derived neurotrophic factor and neurocognition in individuals with schizophrenia: a single-blind, randomized clinical trial. Schizophr Bull. 2015;41:859–68.

    Article  PubMed  Google Scholar 

  83. Oertel-Knöchel V, Mehler P, Thiel C, Steinbrecher K, Malchow B, Tesky V, et al. Effects of aerobic exercise on cognitive performance and individual psychopathology in depressive and schizophrenia patients. Eur. Arch. Psychiatry Clin. Neurosci. 2014;1–16.

  84. Hötting K, Schauenburg G, Röder B. Long-term effects of physical exercise on verbal learning and memory in middle-aged adults: results of a one-year follow-up study. Brain Sci. 2012;2:332–46.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kern RS, Gold JM, Dickinson D, Green MF, Nuechterlein KH, Baade LE, et al. The MCCB impairment profile for schizophrenia outpatients: results from the MATRICS psychometric and standardization study. Schizophr Res. 2011;126:124–31.

    Article  PubMed  PubMed Central  Google Scholar 

  86. August SM, Kiwanuka JN, McMahon RP, Gold JM. The MATRICS Consensus Cognitive Battery (MCCB): clinical and cognitive correlates. Schizophr Res. 2012;134:76–82.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Larson EB, Wang L, Bowen JD, McCormick WC, Teri L, Crane P, et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med. 2006;144:73–81.

    Article  PubMed  Google Scholar 

  88. van Gelder BM, Tijhuis MAR, Kalmijn S, Giampaoli S, Nissinen A, Kromhout D. Physical activity in relation to cognitive decline in elderly men: the FINE Study. Neurology. 2004;63:2316–21.

    Article  PubMed  Google Scholar 

  89. Hennigan A, O’Callaghan RM, Kelly AM. Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans. 2007;35:424–7.

    Article  CAS  PubMed  Google Scholar 

  90. Vaynman S, Gomez-Pinilla F. License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair. 2005;19:283–95.

    Article  PubMed  Google Scholar 

  91. Gomez-Pinilla F, Vaynman S, Ying Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci. 2008;28:2278–87.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kraus RM, Stallings HW, Yeager RC, Gavin TP. Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. J Appl Physiol. 2004;96:1445–50.

    Article  CAS  PubMed  Google Scholar 

  93. Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci. 2003;18:2803–12.

    Article  PubMed  Google Scholar 

  94. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002;25:295–301.

    Article  CAS  PubMed  Google Scholar 

  95. Cotman CW, Berchtold NC, Christie L-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–72.

    Article  CAS  PubMed  Google Scholar 

  96. Prigent-Tessier A, Quirié A, Maguin-Gaté K, Szostak J, Mossiat C, Nappey M, et al. Physical training and hypertension have opposite effects on endothelial brain-derived neurotrophic factor expression. Cardiovasc Res. 2013;100:374–82.

    Article  CAS  PubMed  Google Scholar 

  97. Chaldakov GN, Fiore M, Stankulov IS, Manni L, Hristova MG, Antonelli A, et al. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog Brain Res. 2004;146:279–89.

    Article  CAS  PubMed  Google Scholar 

  98. Mitchell AJ, Vancampfort D, De Herdt A, Yu W, De Hert M. Is the prevalence of metabolic syndrome and metabolic abnormalities increased in early schizophrenia? A comparative meta-analysis of first episode, untreated and treated patients. Schizophr Bull. 2013;39:295–305.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Carroll S, Dudfield M. What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome. Sports Med. 2004;34:371–418.

    Article  PubMed  Google Scholar 

  100. Kimhy D, Khan S, Ayanrouh L, Chang RW, Hansen MC, Lister A, et al. Use of active-play video games to enhance aerobic fitness in schizophrenia: feasibility, safety, and adherence. Psychiatr Serv. 2016;67:240–3. This study highlights the integration of technology in aerobic exercise training programs to increase efficacy and enjoyment, and decrease attrition.

    Article  PubMed  Google Scholar 

  101. Friedman JI, Wallenstein S, Moshier E, Parrella M, White L, Bowler S, et al. The effects of hypertension and body mass index on cognition in schizophrenia. Am J Psychiatry. 2010;167:1232–9.

    Article  PubMed  Google Scholar 

  102. Vancampfort D, Guelinckx H, Probst M, Stubbs B, Rosenbaum S, Ward PB, et al. Health-related quality of life and aerobic fitness in people with schizophrenia. Int J Ment Health Nurs. 2015;24:394–402.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Vakhrusheva.

Ethics declarations

Conflict of Interest

Dr. Julia Vakhrusheva, Ms. Brielle Marino, and Dr. David Kimhy declare that they have no conflicts of interest. Dr. T. Scott Stroup reports support from Genentech for CME, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Psychosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakhrusheva, J., Marino, B., Stroup, T.S. et al. Aerobic Exercise in People with Schizophrenia: Neural and Neurocognitive Benefits. Curr Behav Neurosci Rep 3, 165–175 (2016). https://doi.org/10.1007/s40473-016-0077-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-016-0077-2

Keywords

Navigation