Skip to main content

Advertisement

Log in

The Effects of Aging on Solid Organ Transplantation—Characteristics and Consequences of Immunosenescence

  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of review

To discuss how T, natural killer (NK), and B cell aging modifies outcomes of organ transplantation, the transplant recipient’s efficacy to vaccines, susceptibility to reactivation of latent viral infections, as well as organ quality and function.

Recent findings

The aged immune system is characterized by a decline in naïve T cells and an increase of memory T cells, many of which also express innate markers. NK cells demonstrate a decline in cytokine secretion, cytotoxicity, and immune recognition. A population of pro-inflammatory B lymphocytes termed age-associated B cells (ABCs) expands with age. Functional changes in the aged immune cells induce inflammation and are less effective at controlling infection, mounting vaccine responses, and contributing to allorejection.

Summary

Optimization of care for organ transplantation in older patients requires an improved understanding of immune cell aging and its pleotropic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol. 2021;22(6):687–98.

    Article  CAS  PubMed  Google Scholar 

  3. Goronzy JJ, Weyand CM. Mechanisms underlying T cell ageing. Nat Rev Immunol. 2019;19(9):573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Minato N, Hattori M, Hamazaki Y. Physiology and pathology of T-cell aging. Int Immunol. 2020;32(4):223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu W, Wong G, Hwang YY, Larbi A. The untwining of immunosenescence and aging. Semin Immunopathol. 2020;42(5):559–72.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology. 2007;120(4):435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodrigues LP, Teixeira VR, Alencar-Silva T, Simonassi-Paiva B, Pereira RW, Pogue R, et al. Hallmarks of aging and immunosenescence: connecting the dots. Cytokine Growth Factor Rev. 2021;59(9):–21.

  8. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood. 2003;101(7):2711–20.

    Article  CAS  PubMed  Google Scholar 

  9. Huang H, Sikora MJ, Islam S, Chowdhury RR, Chien Y hsiu, Scriba TJ, et al. Select sequencing of clonally expanded CD8 + T cells reveals limits to clonal expansion. Proc Natl Acad Sci.. 2019 116(18):8995-9001

  10. Fali T, Papagno L, Bayard C, Mouloud Y, Boddaert J, Sauce D, et al. New insights into lymphocyte differentiation and aging from telomere length and telomerase activity measurements. J Immunol Baltim Md. 1950;202(7):1962–9.

    Google Scholar 

  11. Martínez‐Zamudio RI, Dewald HK, Vasilopoulos T, Gittens‐Williams L, Fitzgerald‐Bocarsly P, Herbig U. Senescence‐associated β‐galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021;20(5):e13344.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bektas A, Schurman SH, Gonzalez-Freire M, Dunn CA, Singh AK, Macian F, et al. Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging. 2019;11(21):9234–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Callender LA, Carroll EC, Beal RWJ, Chambers ES, Nourshargh S, Akbar AN, et al. Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell. 2018;17(1):e12675.

    Article  PubMed  Google Scholar 

  14. Lopes-Paciencia S, Saint-Germain E, Rowell MC, Ruiz AF, Kalegari P, Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019;117:15–22.

    Article  CAS  PubMed  Google Scholar 

  15. Lazuardi L, Jenewein B, Wolf AM, Pfister G, Tzankov A, Grubeck-Loebenstein B. Age‐related loss of naive T cells and dysregulation of T‐cell/B‐cell interactions in human lymph nodes. Immunology. 2005;114(1):37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A. Cytomegalovirus and human immunosenescence. Rev Med Virol. 2009;19(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Fujii H, Kishimoto H, LeRoy E, Surh CD, Sprent J. Aging leads to disturbed homeostasis of memory phenotype CD8+ cells. J Exp Med. 2002;195(3):283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wikby A, Johansson B, Olsson J, Löfgren S, Nilsson BO, Ferguson F. Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol. 2002;37(2-3):445–53.

    Article  CAS  PubMed  Google Scholar 

  19. Pulko V, Davies JS, Martinez C, Lanteri MC, Busch MP, Diamond MS, et al. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol. 2016;17(8):966–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003;3(12):939–51.

    Article  CAS  PubMed  Google Scholar 

  21. Martin-Ruiz C, Hoffmann J, Shmeleva E, T von Z, Richardson G, Draganova L, et al. CMV-independent increase in CD27D2739393 1 aging and respos inversely related to mortality in octogenarians. NPJ Aging Mech Dis. 2020;21(6):3.

    Article  Google Scholar 

  22. Choremi-Papadopoulou H, Panagiotou N, Samouilidou E, Kontopidou F, Viglis V, Antoniadou A, et al. CD28 costimulation and CD28 expression in T lymphocyte subsets in HIV-1 infection with and without progression to AIDS. Clin Exp Immunol. 2000;119(3):499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Higdon LE, Gustafson CE, Ji X, Sahoo MK, Pinsky BA, Margulies KB, et al. Association of premature immune aging and cytomegalovirus after solid organ transplant. Front Immunol. 2021;12 Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.661551

  24. Herndler-Brandstetter D, Ishigame H, Shinnakasu R, Plajer V, Stecher C, Zhao J, et al. KLRG1+ effector CD8+ T cells lose KLRG1, differentiate into all memory T cell lineages, and Convey Enhanced Protective Immunity. Immunity. 2018;48(4):716–729.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weng NP, Akbar AN, Goronzy J. CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol. 2009;30(7):30630630.

    Article  Google Scholar 

  26. Seyda M, Elkhal A, Quante M, Falk CS, Tullius SG. T cells going innate. Trends Immunol. 2016;37(8):54654637.

    Article  Google Scholar 

  27. Chen G, Lustig A, Weng N, ping. T cell aging: a review of the transcriptional changes determined from genome-wide analysis. Front Immunol. 2013;20(4):121.

    Google Scholar 

  28. Gumá M, Busch LK, Salazar‐Fontana LI, Bellosillo B, Morte C, García P, López‐Botet M. The CD94/NKG2C killer lectin‐like receptor constitutes an alternative activation pathway for a subset of CD8+ T cells. Eur J Immunol. 2005;35(7):2071–80.

    Article  PubMed  Google Scholar 

  29. Lanier LL, Corliss B, Wu J, Phillips JH. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity. 1998;8(6):693–701.

    Article  CAS  PubMed  Google Scholar 

  30. Le Dréan E, Vély F, Olcese L, Cambiaggi A, Guia S, Krystal G, Gervois N, Moretta A, Jotereau F, Vivier E. Inhibition of antigen‐induced T cell response and antibody‐induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP‐1 and SHP‐2 protein‐tyrosine phosphatases. Eur J Immunol. 2005;28(1):264–76.

    Article  Google Scholar 

  31. Thimme R, Appay V, Koschella M, Panther E, Roth E, Hislop AD, et al. Increased expression of the NK cell receptor KLRG1 by virus-specific CD8 T cells during persistent antigen stimulation. J Virol. 2005;79(18):12112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Pereira BI, De Maeyer RPH, Covre LP, Nehar-Belaid D, Lanna A, Ward S, et al. Sestrins induce natural killer function in senescent-like CD8+ T cells. Nat Immunol. 2020;21(6):684–94. Genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D-DAP12 and restored TCR signaling in CD27 CD28 CD8+ T cells suggesting that sestrins can reverse senescence in T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fribourg M, Anderson L, Fischman C, Cantarelli C, Perin L, La Manna G, et al. T-cell exhaustion correlates with improved outcomes in kidney transplant recipients. Kidney Int. 2019;96(2):436–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song Y, Wang B, Song R, Hao Y, Wang D, Li Y, et al. T-cell immunoglobulin and ITIM domain contributes to CD8+ T-cell immunosenescence. Aging Cell. 2018;17(2):e12716.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Onorati A, Havas AP, Lin B, Rajagopal J, Sen P, Adams PD, et al. Upregulation of PD-L1 in senescence and aging. Mol Cell Biol. 2022;42(10):e0017122.

    Article  PubMed  Google Scholar 

  36. Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020;20(3):17317320.

    Article  Google Scholar 

  37. Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clin Immunol Orlando Fla. 2006;118(1):1–10.

    Article  CAS  Google Scholar 

  38. Jost S, Altfeld M. Control of human viral infections by natural killer cells. Annu Rev Immunol. 2013;31:163–94.

    Article  CAS  PubMed  Google Scholar 

  39. Mariani E, Meneghetti A, Formentini I, Neri S, Cattini L, Ravaglia G, et al. Telomere length and telomerase activity: effect of ageing on human NK cells. Mech Ageing Dev. 2003;124(4):403–8.

    Article  CAS  PubMed  Google Scholar 

  40. Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, et al. Aging of the immune system: focus on natural killer cells phenotype and functions. Cells. 2022;11(6):1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dogra P, Rancan C, Ma W, Toth M, Senda T, Carpenter DJ, et al. Tissue Determinants of Human NK Cell Development, Function, and Residence. Cell. 2020;180(4):749–763.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Le Garff-Tavernier M, Béziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, Debré P, Merle‐Beral H, Vieillard V. Tissue Determinants of Human NK Cell Development, Function, and Refunctional changes over the life span. Aging Cell. 2010;9(4):527–35.

    PubMed  Google Scholar 

  43. Almeida-Oliveira A, Smith-Carvalho M, Porto LC, Cardoso-Oliveira J, Ribeiro A, Falcão RR, Abdelhay E, Bouzas LF, Thuler LC, Ornellas MH, Diamond HR. Diamond HR. Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol. 2011;72(4):319–29.

    Article  CAS  PubMed  Google Scholar 

  44. Krishnaraj R, Svanborg A. Preferential accumulation of mature NK cells during human immunosenescence. J Cell Biochem. 1992;50(4):38638650.

    Article  Google Scholar 

  45. Hazeldine J, Hampson P, Lord JM. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell. 2012;11(5):7517511.

    Article  Google Scholar 

  46. Rukavina D, Laskarin G, Rubesa G, Strbo N, Bedenicki I, Manestar D, et al. Age-related decline of perforin expression in human cytotoxic T lymphocytes and natural killer cells. Blood. 1998;92(7):2410–20.

    Article  CAS  PubMed  Google Scholar 

  47. Müller-Durovic B, Lanna A, Covre LP, Mills RS, Henson SM, Akbar AN. Killer cell lectin-like receptor G1 inhibits NK cell function through activation of adenosine 5iomonophosphate-activated protein kinase. J Immunol Baltim Md. 1950;197(7):2891–9.

    Google Scholar 

  48. Tarazona R, DelaRosa O, Alonso C, Ostos B, Espejo J, Peña J, et al. Increased expression of NK cell markers on T lymphocytes in aging and chronic activation of the immune system reflects the accumulation of effector/senescent T cells. Mech Ageing Dev. 2000;121(1-3)):77–88.

    CAS  PubMed  Google Scholar 

  49. Yokoyama WM, Kim S. Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol Rev. 2006;214:143–54.

    Article  CAS  PubMed  Google Scholar 

  50. • Smith SL, Kennedy PR, Stacey KB, Worboys JD, Yarwood A, Seo S, et al. Diversity of peripheral blood human NK cells identified by single-cell RNA sequencing. Blood Adv. 2020;4(7):1388–406. Single-cell RNA sequencing of NK cells in CMV+ and CMV donors revealed an abundance of distinct NK cell subtypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med. 2013;5(208):208ra145.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Strauss-Albee DM, Fukuyama J, Liang EC, Yao Y, Jarrell JA, Drake AL, et al. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci Transl Med. 2015;7(297):297ra115.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Krishnaraj R. Senescence and cytokines modulate the NK cell expression. Mech Ageing Dev. 1997;96(1-3):89–101.

    Article  CAS  PubMed  Google Scholar 

  54. Krishnaraj R, Bhooma T. Cytokine sensitivity of human NK cells during immunosenescence. 2. IL2-induced interferon gamma secretion. Immunol Lett. 1996;50(1-2):59–63.

    Article  CAS  PubMed  Google Scholar 

  55. Mariani E, Pulsatelli L, Neri S, Dolzani P, Meneghetti A, Silvestri T, et al. RANTES and MIP-1alpha production by T lymphocytes, monocytes and NK cells from nonagenarian subjects. Exp Gerontol. 2002;37(2-3):219–26.

    Article  CAS  PubMed  Google Scholar 

  56. Mariani E, Pulsatelli L, Meneghetti A, Dolzani P, Mazzetti I, Neri S, et al. Different IL-8 production by T and NK lymphocytes in elderly subjects. Mech Ageing Dev. 2001;122(13):1383–95.

    Article  CAS  PubMed  Google Scholar 

  57. Mariani E, Meneghetti A, Neri S, Ravaglia G, Forti P, Cattini L, et al. Chemokine production by natural killer cells from nonagenarians. Eur J Immunol. 2002;32(6):1524–9.

    Article  CAS  PubMed  Google Scholar 

  58. Frasca D, Blomberg BB. Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination. Immun Ageing A. 2020;17(1):37.

    Article  CAS  Google Scholar 

  59. de Mol J, Kuiper J, Tsiantoulas D, Foks AC. The dynamics of B cell aging in health and disease. Front Immunol. 2021; [cited 2023 Apr 20];12. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.733566

  60. Blanco E, Pérez-Andrés M, Arriba-Méndez S, Contreras-Sanfeliciano T, Criado I, Pelak O, et al. Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood. J Allergy Clin Immunol. 2018;141(6):2208–2219.e16.

    Article  CAS  PubMed  Google Scholar 

  61. Russell Knode LM, Naradikian MS, Myles A, Scholz JL, Hao Y, Liu D, et al. Age-associated B cells express a diverse repertoire of VH and Vf genes with somatic hypermutation. J Immunol Baltim Md. 1950;198(5):1921–7.

    Google Scholar 

  62. Naradikian MS, Myles A, Beiting DP, Roberts KJ, Dawson L, Herati RS, et al. Cutting edge: IL-4, IL-21, and IFN-eiinteract to govern T-bet and CD11c expression in TLR-activated B cells. J Immunol Baltim Md. 1950;197(4):1023–8.

    Google Scholar 

  63. Zumaquero E, Stone SL, Scharer CD, Jenks SA, Nellore A, Mousseau B, et al. IFNγ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8 and IL-21 induced differentiation, Batista FD, Taniguchi T, Gaya M eLife. 2019, 8:e41641.

  64. Cancro MP. Age-associated B cells. Annu Rev Immunol. 2020;38(3155):197.

    Google Scholar 

  65. Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW, et al. Toll-like receptor 7 (TLR7)–driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood. 2011;118(5):1305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hao Y, O’Neill P, Naradikian MS, Scholz JL, Cancro MP A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice Blood.. 2011 118(5):1294-1304

  67. Saadoun D, Terrier B, Bannock J, Vazquez T, Massad C, Kang I, et al. Expansion of autoreactive unresponsive CD21-/low B cells in Sjögren’s syndrome-associated lymphoproliferation. Arthritis Rheum. 2013;65(4):1085–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Glauzy S, Boccitto M, Bannock JM, Delmotte FR, Saadoun D, Cacoub P, et al. Accumulation of antigen-driven lymphoproliferations in complement receptor 2/CD21-/low B cells from patients with Sjlls fro syndrome. Arthritis Rheumatol Hoboken NJ. 2018;70(2):298–307.

    Article  CAS  Google Scholar 

  69. Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases. Cell Mol Life Sci. 2022;79(8):402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mouat IC, Horwitz MS. Age-associated B cells in viral infection. PLoS Pathog. 2022;18(3):e1010297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mouat IC, Allanach JR, Fettig NM, Fan V, Girard AM, Shanina I, et al. Gammaherpesvirus infection drives age-associated B cells toward pathogenicity in EAE and MS. Sci Adv. 2022;8(47):eade6844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev. 2022;1:79–100.

    Article  Google Scholar 

  73. Keren Z, Naor S, Nussbaum S, Golan K, Itkin T, Sasaki Y, et al. B-cell depletion reactivates B lymphopoiesis in the BM and rejuvenates the B lineage in aging. Blood. 2011;117(11):3104–12.

    Article  CAS  PubMed  Google Scholar 

  74. Riley RL, Khomtchouk K, Blomberg BB. Age-associated B cells (ABC) inhibit B lymphopoiesis and alter antibody repertoires in old age. Cell Immunol. 2017;321:61–7.

    Article  CAS  PubMed  Google Scholar 

  75. Du SW, Arkatkar T, Al Qureshah F, Jacobs HM, Thouvenel CD, Chiang K, et al. Functional characterization of CD11c+ age-associated B cells as memory B cells. J Immunol Baltim Md. 1950;203(11):2817–26.

    Google Scholar 

  76. Hao Y, O’Neill P, Naradikian MS, Scholz JL, Cancro MP. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood. 2011;118(5):1294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rubtsov AV, Rubtsova K, Kappler JW, Jacobelli J, Friedman RS, Marrack P. CD11c-expressing B cells are located at the T Cell/B cell border in spleen and are potent APCs. J Immunol Baltim Md. 1950;195(1):71–9.

    Google Scholar 

  78. Naradikian MS, Myles A, Beiting DP, Roberts KJ, Dawson L, Herati RS, et al. Cutting edge: IL-4, IL-21, and IFN-e interact to govern T-bet and CD11c expression in TLR-activated B Cells. J Immunol Baltim Md. 1950;197(4):1023–8.

    Google Scholar 

  79. Ellebedy AH, Jackson KJL, Kissick HT, Nakaya HI, Davis CW, Roskin KM, et al. Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nat Immunol. 2016;17(10):1226226.

    Article  Google Scholar 

  80. Colonna-Romano G, Bulati M, Aquino A, PellicancanDavis CW, Roskin K, et al. A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev. 2009;130(10):681–90.

    Article  CAS  PubMed  Google Scholar 

  81. Wang S, Wang J, Kumar V, Karnell JL, Naiman B, Gross PS, et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat Commun. 2018;9(1):1758.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV, Wang X, et al. Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity. 2018;49(4):725–739.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stone SL, Peel J, Scharer CD, Risley CA, Chisolm DA, Schultz MD, et al. T-bet transcription factor promotes antibody secreting cell differentiation by limiting the inflammatory effects of IFNγ on B cells. Immunity. 2019;50(5):1172–1187.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barnett BE, Staupe RP, Odorizzi PM, Palko O, Tomov VT, Mahan AE, et al. Cutting edge: B cell–intrinsic T-bet expression is required to control chronic viral infection. J Immunol. 2016;197(4):1017–22.

    Article  CAS  PubMed  Google Scholar 

  85. Macshut M, Kaido T, Yao S, Yagi S, Ito T, Kamo N, et al. Older donor age is a risk factor for negative outcomes after adult living donor liver transplantation using small-for-size grafts. Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc. 2019;25(10):1524–32.

    Google Scholar 

  86. Yeow M, Pang NQ, Muthiah MD, Soon G, Yock-Young D, Bonney GK, et al. Impact of donor age on recipient morbidity and mortality after living donor liver transplantation. ANZ J Surg. 2022;92(7-8):1867–72.

    Article  PubMed  Google Scholar 

  87. Weber DJ, Wang IW, Gracon ASA, Hellman YM, Hormuth DA, Wozniak TC, et al. Impact of donor age on survival after heart transplantation: an analysis of the United Network for Organ Sharing (UNOS) registry. J Card Surg. 2014;29(5):723–8.

    Article  PubMed  Google Scholar 

  88. Bittle GJ, Sanchez PG, Kon ZN, Claire Watkins A, Rajagopal K, Pierson RN, et al. The use of lung donors older than 55 years: a review of the United Network of Organ Sharing database. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2013;32(8):760–8.

    Article  Google Scholar 

  89. Lentine KL, Smith JM, Miller JM, Bradbrook K, Larkin L, Weiss S, et al. OPTN/SRTR 2021 annual data report: kidney. Am J Transplant. 2023;23(2):S21–120.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Poulose N, Raju R. Aging and injury: alterations in cellular energetics and organ function. Aging Dis. 2014;5(2):101–8.

    PubMed  PubMed Central  Google Scholar 

  91. Colvin MM, Smith CA, Tullius SG, Goldstein DR. Aging and the immune response to organ transplantation. J Clin Invest. 2017;127(7):2523–9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. He A, Sarwar A, Thole LML, Siegle J, Sattler A, Ashraf MI, et al. Renal inflamm-aging provokes intra-graft inflammation following experimental kidney transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2022;22(11):2529–47.

    Article  CAS  Google Scholar 

  93. Matsunaga T, Iske J, Schroeter A, Azuma H, Zhou H, Tullius SG. The potential of Senolytics in transplantation. Mech Ageing Dev. 2021;200:111582.

    Article  CAS  PubMed  Google Scholar 

  94. Iske J, Seyda M, Heinbokel T, Maenosono R, Minami K, Nian Y, et al. Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nat Commun. 2020;11(1):4289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jonsson AH, Zhang F, Dunlap G, Gomez-Rivas E, Watts GFM, Faust HJ, et al. Granzyme K+ CD8 T cells form a core population in inflamed human tissue. Sci Transl Med. 2022;14(649):eabo0686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cuollo L, Antonangeli F, Santoni A, Soriani A. The senescence-associated secretory phenotype (SASP) in the challenging future of cancer therapy and age-related diseases. Biology. 2020;9(12):485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sanderson SL, Simon AK. In aged primary T cells, mitochondrial stress contributes to telomere attrition measured by a novel imaging flow cytometry assay. Aging Cell. 2017;16(6):1234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim HJ, Kim WJ, Shin HR, Yoon HI, Moon JI, Lee E, et al. ROS-induced PADI2 downregulation accelerates cellular senescence via the stimulation of SASP production and NFκB activation. Cell Mol Life Sci. 2022;79(3):155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Desdín-Micó G, Soto-Heredero G, Aranda JF, Oller J, Carrasco E, Gabandé-Rodríguez E, et al. ROS-induced PADI2 downregulation accelerates cellular senescence via the stimulation of SASP pty and premature senescence. Science. 2020;368(6497):1371–6.

    Article  PubMed  Google Scholar 

  100. Chiu YL, Tsai WC, Hung RW, Chen IY, Shu KH, Pan SY, et al. Emergence of T cell immunosenescence in diabetic chronic kidney disease. Immun Ageing. 2020;17(1):31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Goplen NP, Wu Y, Son YM, Li C, Wang Z, Cheon IS, et al. Tissue-resident CD8+ T cells drive age-associated chronic lung sequelae after viral pneumonia. Sci Immunol. 2020;5(53):eabc4557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Delgobo M, Heinrichs M, Hapke N, Ashour D, Appel M, Srivastava M, et al. Terminally differentiated CD4+ T cells promote myocardial inflammaging. Front Immunol. 2021;12:584538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moro-García MA, López-Iglesias F, Marcos-Fernández R, Bueno-García E, Díaz-Molina B, Lambert JL, et al. More intensive CMV-infection in chronic heart failure patients contributes to higher T-lymphocyte differentiation degree, Clin Immunol., Orlando Fla 2018, 192, 20–29

  104. Spyridopoulos I, Martin-Ruiz C, Hilkens C, Yadegarfar ME, Isaacs J, Jagger C, et al. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell. 2016;15(2):389–92.

    Article  CAS  PubMed  Google Scholar 

  105. Pontrelli P, Rascio F, Castellano G, Grandaliano G, Gesualdo L, Stallone G. The role of natural killer cells in the immune response in kidney transplantation. Front Immunol. 2020;23(11):1454.

    Article  Google Scholar 

  106. Iske J, Matsunaga T, Zhou H, Tullius SG. Donor and recipient age-mismatches: the potential of transferring senescence. Front Immunol. 2021;28(12):671479.

    Article  Google Scholar 

  107. Schmitz R, Fitch ZW, Schroder PM, Choi AY, Jackson AM, Knechtle SJ, et al. B cells in transplant tolerance and rejection: friends or foes? Transpl Int Off J Eur Soc Organ Transplant. 2020;33(1):30–40.

    Google Scholar 

  108. Heinbokel T, Elkhal A, Liu G, Edtinger K, Tullius SG. Immunosenescence and organ transplantation. Transplant Rev Orlando Fla. 2013;27(3):65–75.

    Article  Google Scholar 

  109. Starzl TE, Zinkernagel RM. Antigen localization and migration in immunity and tolerance. N Engl J Med. 1998;339(26):1905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Krenzien F, ElKhal A, Quante M, Rodriguez Cetina Biefer H, Hirofumi U, Gabardi S, et al. A rationale for age-adapted immunosuppression in organ transplantation. Transplantation. 2015;99(11):2258–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nian Y, Minami K, Maenesono R, Iske J, Yang J, Azuma H, et al. Changes of T-cell immunity over a lifetime. Transplantation. 2019;103(11):2227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Thangavelu G, Murphy KM, Yagita H, Boon L, Anderson CC. The role of co-inhibitory signals in spontaneous tolerance of weakly mismatched transplants. Immunobiology. 2011;216(8):918–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Koehn BH, Ford ML, Ferrer IR, Borom K, Gangappa S, Kirk AD, et al. PD-1-dependent mechanisms maintain peripheral tolerance of donor-reactive CD8+ T cells to transplanted tissue. J Immunol Baltim Md. 1950;181(8):5313–22.

    Google Scholar 

  114. Wang L, Han R, Hancock WW. Programmed cell death 1 (PD-1) and its ligand PD-L1 are required for allograft tolerance. Eur J Immunol. 2007;37(10):2983–90.

    Article  CAS  PubMed  Google Scholar 

  115. • van der List ACJ, Litjens NHR, Klepper M, MGH B. Expression of senescence marker TIGIT identifies polyfunctional donor-reactive CD4+ T cells preferentially lost after kidney transplantation. Front Immunol. 2023;12 https://doi.org/10.3389/fimmu.2021.656846. Authors identified a donor-reactive memory CD4+ T cell type expressing the senescent and inhibitory marker TIGIT with a highly polyfunctional cytokine expression profile that declined after kidney transplantation. The decrease in this cell type is suggested to contribute to hyporesponsiveness in transplant recipients.

  116. Dugast E, David G, Oger R, Danger R, Judor JP, Gagne K, et al. Broad impairment of natural killer cells from operationally tolerant kidney transplanted patients. Front Immunol. 2017;8 https://doi.org/10.3389/fimmu.2017.01721.

  117. Wang L, Rondaan C, de Joode AAE, Raveling-Eelsing E, Bos NA, Westra J. Changes in T and B cell subsets in end stage renal disease patients before and after kidney transplantation. Immun Ageing. 2021;18(1):43.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cherukuri A, Mohib K, Rothstein DM. Regulatory B cells: TIM‐1, transplant tolerance, and rejection. Immunol Rev. 299(1):31–44.

  119. Wikby A, Ferguson F, Strindhall J, Forsey RJ, Fulop T, Hadrup SR, et al. Immune risk phenotypes and associated parameters in very old humans: a review of findings in the Swedish NONA immune longitudinal study. In: Pawelec G, editor. Immunosenescence. New York, NY: Springer, Medical Intelligence Unit; 2007. p. 1. https://doi.org/10.1007/978-0-387-76842-7_1.

    Chapter  Google Scholar 

  120. Olsson J, Wikby A, Johansson B, Löfgren S, Nilsson BO, Ferguson FG. Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev. 2000;121(1–3):187–201.

    CAS  PubMed  Google Scholar 

  121. Weltevrede M, Eilers R, de Melker HE, van Baarle D. Cytomegalovirus persistence and T-cell immunosenescence in people aged fifty and older: a systematic review. Exp Gerontol. 2016;77:87–95.

    Article  CAS  PubMed  Google Scholar 

  122. Schaenman JM, Rossetti M, Sidwell T, Groysberg V, Sunga G, Korin Y, et al. Increased T cell immunosenescence and accelerated maturation phenotypes in older kidney transplant recipients. Hum Immunol. 2018;79(9):659–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Higdon LE, Schaffert S, Huang H, Montez-Rath ME, Lucia M, Jha A, et al. Evolution of cytomegalovirus-responsive T cell clonality following solid organ transplantation. J Immunol Baltim Md. 1950;207(8):2077–85.

    Google Scholar 

  124. Higdon LE, Trofe-Clark J, Liu S, Margulies KB, Sahoo MK, Blumberg E, et al. Cytomegalovirus-responsive CD8+ T cells expand after solid organ transplantation in the absence of CMV disease. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2017;17(8):2045–54.

    Article  CAS  Google Scholar 

  125. Martín-Gandul C, Pérez-Romero P, Mena-Romo D, Molina-Ortega A, González-Roncero FM, Suñer M, et al. Kinetic of the CMV-specific T-cell immune response and CMV infection in CMV-seropositive kidney transplant recipients receiving rabbit anti-thymocyte globulin induction therapy: a pilot study. Transpl Infect Dis Off J Transplant Soc. 2018;20(3):e12883.

    Article  Google Scholar 

  126. Higdon LE, Gustafson CE, Ji X, Sahoo MK, Pinsky BA, Margulies KB, et al. Association of Premature Immune Aging and Cytomegalovirus After Solid Organ Transplant. Front Immunol. 2021;12:661551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Daniel L, Tassery M, Lateur C, Thierry A, Herbelin A, Gombert JM, et al. Allotransplantation is associated with exacerbation of CD8 T-cell senescence: the particular place of the innate CD8 T-cell component. Front Immunol. 2021;12 https://doi.org/10.3389/fimmu.2021.674016.

  128. Pickering H, Schaenman J, Rossetti M, Ahn R, Sunga G, Liang EC, et al. T cell senescence and impaired CMV-specific response are associated with infection risk in kidney transplant recipients. Hum Immunol. 2022;83(4):273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hammer Q, Rückert T, Borst EM, Dunst J, Haubner A, Durek P, et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat Immunol. 2018;19(5):453–63.

    Article  CAS  PubMed  Google Scholar 

  130. López-Botet M, Vilches C, Redondo-Pachón D, Muntasell A, Pupuleku A, Yélamos J, et al. Dual Role of Natural Killer Cells on Graft Rejection and Control of Cytomegalovirus Infection in Renal Transplantation. Front Immunol. 2017;16(8):166.

    Google Scholar 

  131. Redondo-Pachón D, Crespo M, Yélamos J, Muntasell A, Pérez-Sáez MJ, Pérez-Fernández S, et al. Adaptive NKG2C+ NK Cell Response and the Risk of Cytomegalovirus Infection in Kidney Transplant Recipients. J Immunol Baltim Md. 1950;198(1):94–101.

    Google Scholar 

  132. Della Chiesa M, Falco M, Podestà M, Locatelli F, Moretta L, Frassoni F, et al. Phenotypic and functional heterogeneity of human NK cells developing after umbilical cord blood transplantation: a role for human cytomegalovirus? Blood. 2012;119(2):399–410.

    Article  CAS  PubMed  Google Scholar 

  133. Lopez-Vergès S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J, et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci U S A. 2011;108(36):4725–32.

    Article  Google Scholar 

  134. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. 2012;119(11):2665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ishibashi K, Yamaguchi O, Suzutani T. Reinfection of cytomegalovirus in renal transplantation. Fukushima J Med Sci. 2011;57(1):1–10.

    Article  PubMed  Google Scholar 

  136. Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. Immun Ageing A. 2019;16:25.

    Article  Google Scholar 

  137. Alter G, Sekaly RP. Beyond adjuvants: antagonizing inflammation to enhance vaccine immunity. Vaccine. 2015;8(33 Suppl 2):B55–9.

    Article  Google Scholar 

  138. Dunn-Walters DK. The ageing human B cell repertoire: a failure of selection? Clin Exp Immunol. 2016;183(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  139. Howard WA, Gibson KL, Dunn-Walters DK. Antibody quality in old age. Rejuvenation Res. 2006;9((1):117–25.

    Article  CAS  PubMed  Google Scholar 

  140. Pritz T, Lair J, Ban M, Keller M, Weinberger B, Krismer M, et al. Plasma cell numbers decrease in bone marrow of old patients. Eur J Immunol. 2015;45(3):738–46.

    Article  CAS  PubMed  Google Scholar 

  141. Jiang N, He J, Weinstein JA, Penland L, Sasaki S, He XS, et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci Transl Med. 2013;5(171):171ra19.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Nunzi E, Iorio AM, Camilloni B. A 21-winter seasons retrospective study of antibody response after influenza vaccination in elderly (60-85 years old) institutionalized subjects. Hum Vaccines Immunother. 2017;13(11):2659–68.

    Article  Google Scholar 

  143. • Kugler-Umana O, Zhang W, Kuang Y, Liang J, Castonguay CH, Tonkonogy SL, et al. IgD+ age-associated B cells are the progenitors of the main T-independent B cell response to infection that generates protective Ab and can be induced by an inactivated vaccine in the aged. Aging Cell. 2022;21(10):e13705. In this mouse study an IgD+ ABC subtype has been identified that likely function as naïve B cells with a potential to become an antibody secreting cell in the aged population with decreased B and T cell responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. • Cox A, Cevik H, Feldman HA, Canaday LM, Lakes N, Waggoner SN. Targeting natural killer cells to enhance vaccine responses. Trends Pharmacol Sci. 2021;42(9):789–801. NK cells have recently been identified as key regulators of vaccine-elicited T and B cell responses and as memory cells that contribute to pathogen control. The antibody-dependent cytolytic activity of NK cells is vital to the magnitude and quality of long-lived T and B cell memory. NK cells can restrain the affinity maturation of neutralizing antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schrezenmeier E, Rincon-Arevalo H, Stefanski AL, Potekhin A, Staub-Hohenbleicher H, Choi M, et al. B and T cell responses after a third dose of SARS-CoV-2 vaccine in kidney transplant recipients. J Am Soc Nephrology. 2021;32(12):3027.

    Article  CAS  Google Scholar 

  146. Rincon-Arevalo H, Choi M, Stefanski AL, Halleck F, Weber U, Szelinski F, et al. Impaired humoral immunity to SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients and dialysis patients. Sci Immunol. 2021;6(60):–eabj1031.

  147. Malahe SRK, Hartog Y den, Rietdijk WJR, van Baarle D, de Kuiper R, Reijerkerk D, et al. The role of interleukin-21 in COVID-19 vaccinecinen kidney transplant recipients and dialysis patients. Am J Transplant. 2023, Available from: https://www.sciencedirect.com/science/article/pii/S1600613523004926

  148. Furian L, Russo FP, Zaza G, Burra P, Hartzell S, Bizzaro D, et al. Differences in humoral and cellular vaccine responses to SARS-CoV-2 in kidney and liver transplant recipients. Front Immunol. 2022;13 https://doi.org/10.3389/fimmu.2022.853682.

Download references

Funding

This work was supported by awards to JSM from the Veterans Administration (1I01CX001971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S Maltzman.

Ethics declarations

Conflict of Interest

JSM is a member of the scientific advisory board of Qihan Biotec and has a family member who is employed by Iconovir.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rollenhagen, C., Maltzman, J.S. The Effects of Aging on Solid Organ Transplantation—Characteristics and Consequences of Immunosenescence. Curr Transpl Rep 10, 135–146 (2023). https://doi.org/10.1007/s40472-023-00405-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-023-00405-5

Keywords

Navigation