Skip to main content
Log in

Antibody-Mediated Rejection: the Role of Plasma Cells and Memory B Cells

  • Immunology (R Fairchild, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Antibody-mediated rejection (ABMR) is one of the most common causes of renal allograft loss. This review aims to outline the different clinical scenarios of ABMR with an emphasis on the cellular sources of antibody.

Recent Findings

Studies of human plasma cells (PC) and memory B cells have been limited, but existing data suggest that both can contribute to ABMR. Hyperacute ABMR is due to pre-existing anti-HLA antibodies. Early acute ABMR likely involves the stimulation of memory B cells and can lead to new long-lived plasma cells. Late acute ABMR involves the de novo development of new memory B cells and PCs that are resistant to conventional immunosuppression. Chronic active ABMR involves not only antibodies (either pre-existing or de novo) but also effector cells such as NK cells, T cells, and macrophages.

Summary

Cellular processes underlying ABMR involve interactions between memory B cells, plasmablasts, plasma cells, and various effectors. Understanding these cellular processes is needed to improve therapies for ABMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. El-Zoghby ZM, Stegall MD, Lager DJ, Kremers WK, Amer H, Gloor JM, et al. Identifying specific causes of kidney allograft loss. Am J Transplant. 2009;9(3):527–35. https://doi.org/10.1111/j.1600-6143.2008.02519.x.

    Article  CAS  PubMed  Google Scholar 

  2. Sellares J, de Freitas DG, Mengel M, Reeve J, Einecke G, Sis B, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 2012;12(2):388–99. https://doi.org/10.1111/j.1600-6143.2011.03840.x.

    Article  CAS  PubMed  Google Scholar 

  3. Parajuli S, Aziz F, Garg N, Panzer SE, Joachim E, Muth B, et al. Histopathological characteristics and causes of kidney graft failure in the current era of immunosuppression. World J Transplant. 2019;9(6):123–33. https://doi.org/10.5500/wjt.v9.i6.123.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hart A, Singh D, Brown SJ, Wang JH, Kasiske BL. Incidence, risk factors, treatment, and consequences of antibody-mediated kidney transplant rejection: a systematic review. Clin Transplant. 2021:e14320. doi: https://doi.org/10.1111/ctr.14320.

  5. Everly MJ, Rebellato LM, Haisch CE, Ozawa M, Parker K, Briley KP, et al. Incidence and impact of de novo donor-specific alloantibody in primary renal allografts. Transplantation. 2013;95(3):410–7. https://doi.org/10.1097/TP.0b013e31827d62e3.

    Article  CAS  PubMed  Google Scholar 

  6. Aubert O, Loupy A, Hidalgo L, Duong van Huyen JP, Higgins S, Viglietti D, et al. Antibody-mediated rejection due to preexisting versus de novo donor-specific antibodies in kidney allograft recipients. J Am Soc Nephrol. 2017;28(6):1912–23. https://doi.org/10.1681/ASN.2016070797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roberts DM, Jiang SH, Chadban SJ. The treatment of acute antibody-mediated rejection in kidney transplant recipients-a systematic review. Transplantation. 2012;94(8):775–83. https://doi.org/10.1097/TP.0b013e31825d1587.

    Article  CAS  PubMed  Google Scholar 

  8. • Seifert M, Kuppers R. Human memory B cells. Leukemia. 2016;30(12):2283–92. https://doi.org/10.1038/leu.2016.226. (This review provides a thorough description of generation, functions, and diversity of memory B cells along with an emphasis on their role in persistent antibody generation.)

    Article  CAS  PubMed  Google Scholar 

  9. Marino J, Paster J, Benichou G. Allorecognition by T lymphocytes and allograft rejection. Front Immunol. 2016;7:582. https://doi.org/10.3389/fimmu.2016.00582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol. 2015;15(3):149–59. https://doi.org/10.1038/nri3802.

    Article  CAS  PubMed  Google Scholar 

  11. Weisel F, Shlomchik M. Memory B cells of mice and humans. Annu Rev Immunol. 2017;35:255–84. https://doi.org/10.1146/annurev-immunol-041015-055531.

    Article  CAS  PubMed  Google Scholar 

  12. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. https://doi.org/10.3389/fimmu.2014.00520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valenzuela NM, Hickey MJ, Reed EF. Antibody subclass repertoire and graft outcome following solid organ transplantation. Front Immunol. 2016;7:433. https://doi.org/10.3389/fimmu.2016.00433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lionaki S, Panagiotellis K, Iniotaki A, Boletis JN. Incidence and clinical significance of de novo donor specific antibodies after kidney transplantation. Clin Dev Immunol. 2013;2013: 849835. https://doi.org/10.1155/2013/849835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. •• Wiebe C, Gibson IW, Blydt-Hansen TD, Karpinski M, Ho J, Storsley LJ, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant. 2012;12(5):1157–67. https://doi.org/10.1111/j.1600-6143.2012.04013.x. (This is a landmark clinical trial that identifies the risk factors for and the clinicopathological outcomes of de novo donor-specific HLA antibody development in kidney recipients.)

    Article  CAS  PubMed  Google Scholar 

  16. •• Wiebe C, Nevins TE, Robiner WN, Thomas W, Matas AJ, Nickerson PW. The synergistic effect of Class II HLA epitope-mismatch and nonadherence on acute rejection and graft survival. Am J Transplant. 2015;15(8):2197–202. https://doi.org/10.1111/ajt.13341. (This prospective study demonstrated that Class II HLA mismatch and medication nonadherence synergistically increase the risk of developing de novo DSA and exhibit an exposure-response relationship.)

    Article  CAS  PubMed  Google Scholar 

  17. Wiebe C, Gibson IW, Blydt-Hansen TD, Pochinco D, Birk PE, Ho J, et al. Rates and determinants of progression to graft failure in kidney allograft recipients with de novo donor-specific antibody. Am J Transplant. 2015;15(11):2921–30. https://doi.org/10.1111/ajt.13347.

    Article  CAS  PubMed  Google Scholar 

  18. •• Diwan TS, Raghavaiah S, Burns JM, Kremers WK, Gloor JM, Stegall MD. The impact of proteasome inhibition on alloantibody-producing plasma cells in vivo. Transplantation. 2011;91(5):536–41. https://doi.org/10.1097/TP.0b013e3182081333. (This clinical trial found that the proteosome inhibitor bortezomib is efficacious in reducing bone marrow plasma cell number and DSA levels in presensitized kidney recipients.)

    Article  CAS  PubMed  Google Scholar 

  19. Perry DK, Burns JM, Pollinger HS, Amiot BP, Gloor JM, Gores GJ, et al. Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production. Am J Transplant. 2009;9(1):201–9. https://doi.org/10.1111/j.1600-6143.2008.02461.x.

    Article  CAS  PubMed  Google Scholar 

  20. DeWolf S, Sykes M. Alloimmune T cells in transplantation. J Clin Invest. 2017;127(7):2473–81. https://doi.org/10.1172/JCI90595.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Benichou G, Gonzalez B, Marino J, Ayasoufi K, Valujskikh A. Role of memory T cells in allograft rejection and tolerance. Front Immunol. 2017;8:170. https://doi.org/10.3389/fimmu.2017.00170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schinstock CA, Bentall AJ, Smith BH, Cornell LD, Everly M, Gandhi MJ, et al. Long-term outcomes of eculizumab-treated positive crossmatch recipients: allograft survival, histologic findings, and natural history of the donor-specific antibodies. Am J Transplant. 2019;19(6):1671–83. https://doi.org/10.1111/ajt.15175.

    Article  CAS  PubMed  Google Scholar 

  23. Lefaucheur C, Viglietti D, Mangiola M, Loupy A, Zeevi A. From humoral theory to performant risk stratification in kidney transplantation. J Immunol Res. 2017;2017:5201098. https://doi.org/10.1155/2017/5201098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levine DJ, Glanville AR, Aboyoun C, Belperio J, Benden C, Berry GJ, et al. Antibody-mediated rejection of the lung: a consensus report of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2016;35(4):397–406. https://doi.org/10.1016/j.healun.2016.01.1223.

    Article  PubMed  Google Scholar 

  25. Zeevi A, Lunz J, Feingold B, Shullo M, Bermudez C, Teuteberg J, et al. Persistent strong anti-HLA antibody at high titer is complement binding and associated with increased risk of antibody-mediated rejection in heart transplant recipients. J Heart Lung Transplant. 2013;32(1):98–105. https://doi.org/10.1016/j.healun.2012.09.021.

    Article  PubMed  Google Scholar 

  26. • Schinstock C, Stegall MD. Acute antibody-mediated rejection in renal transplantation: current clinical management. Curr Transplant Rep. 2014;1(2):78–85. https://doi.org/10.1007/s40472-014-0012-y. (This is a state-of-the art review summarizing the current clinical phenotypes of and therapeutic options in ABMR.)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vo AA, Lukovsky M, Toyoda M, Wang J, Reinsmoen NL, Lai CH, et al. Rituximab and intravenous immune globulin for desensitization during renal transplantation. N Engl J Med. 2008;359(3):242–51. https://doi.org/10.1056/NEJMoa0707894.

    Article  CAS  PubMed  Google Scholar 

  28. Redfield RR, Jordan SC, Busque S, Vincenti F, Woodle ES, Desai N, et al. Safety, pharmacokinetics, and pharmacodynamic activity of obinutuzumab, a type 2 anti-CD20 monoclonal antibody for the desensitization of candidates for renal transplant. Am J Transplant. 2019;19(11):3035–45. https://doi.org/10.1111/ajt.15514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. • Dean PG, Park WD, Cornell LD, Gloor JM, Stegall MD. Intragraft gene expression in positive crossmatch kidney allografts: ongoing inflammation mediates chronic antibody-mediated injury. Am J Transplant. 2012;12(6):1551–63. https://doi.org/10.1111/j.1600-6143.2011.03964.x. (According to this study on intragraft gene expression in sensitized kidney recipients, sensitized patients with transplant glomerulopathy had enrichment of inflammatory genes compared to those without transplant glomerulopathy.)

    Article  CAS  PubMed  Google Scholar 

  30. Soares MP, Lin Y, Sato K, Stuhlmeier KM, Bach FH. Accommodation. Immunol Today. 1999;20(10):434–7. https://doi.org/10.1016/S0167-5699(99)01530-3.

    Article  CAS  PubMed  Google Scholar 

  31. Burdorf L, Azimzadeh AM, Pierson RN 3rd. Progress and challenges in lung xenotransplantation: an update. Curr Opin Organ Transplant. 2018;23(6):621–7. https://doi.org/10.1097/MOT.0000000000000582.

    Article  CAS  PubMed  Google Scholar 

  32. Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, Kuthuru O, et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals following mRNA vaccination. Sci Immunol. 2021;6(58). https://doi.org/10.1126/sciimmunol.abi6950

  33. •• Karahan GE, Krop J, Wehmeier C, de Vaal YJH, Langerak-Langerak J, Roelen DL, et al. An easy and sensitive method to profile the antibody specificities of HLA-specific memory B cells. Transplantation. 2019;103(4):716–23. https://doi.org/10.1097/TP.0000000000002516. (This study showed that screening for pretransplant sensitization improves the detection of HLA-specific memory B cells, which according to the study is more sensitively determined via B cell culture followed by IgG isolation rather than supernatant concentration.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. •• Wehmeier C, Karahan GE, Heidt S. HLA-specific memory B-cell detection in kidney transplantation: insights and future challenges. Int J Immunogenet. 2020;47(3):227–34. https://doi.org/10.1111/iji.12493. (This review outlines the strengths and limitations of the assays used to identify HLA-specific memory B cells (i.e., flow cytometry, Luminex single antigen beads, ELISpot).)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. •• Lucia M, Luque S, Crespo E, Melilli E, Cruzado JM, Martorell J, et al. Preformed circulating HLA-specific memory B cells predict high risk of humoral rejection in kidney transplantation. Kidney Int. 2015;88(4):874–87. https://doi.org/10.1038/ki.2015.205. (This paper suggests that memory B cells play a key role in ABMR through showing correlation between sensitization and HLA-specific memory B cell response.)

    Article  CAS  PubMed  Google Scholar 

  36. •• Woodle ES, Tremblay S, Rossi A, Rojas CC, Alloway R, Roskin K, et al. Plasma cell targeting to prevent antibody-mediated rejection. Am J Transplant. 2020;20(Suppl 4):33–41. https://doi.org/10.1111/ajt.15889. (Reviews the results of recent clinical trials on the efficacy of first- and second-generation proteosome inhibitors in eliminating plasmablasts and long-lived plasma cells.)

    Article  CAS  PubMed  Google Scholar 

  37. •• Woodle ES, Tremblay S, Brailey P, Girnita A, Alloway RR, Aronow B, et al. Proteasomal adaptations underlying carfilzomib-resistance in human bone marrow plasma cells. Am J Transplant. 2020;20(2):399–410. https://doi.org/10.1111/ajt.15634. (Transcriptomic profiling of long-lived plasma cells that survived in vivo desensitization therapy with the proteosome inhibitor carfilzomib revealed increased expression of the immunoproteosome.)

    Article  CAS  PubMed  Google Scholar 

  38. Chesneau M, Michel L, Degauque N, Brouard S. Regulatory B cells and tolerance in transplantation: from animal models to human. Front Immunol. 2013;4:497. https://doi.org/10.3389/fimmu.2013.00497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cowan ML, Sciammas R, Chong AS. Experimental models of B cell tolerance in transplantation. Semin Immunol. 2012;24(2):77–85. https://doi.org/10.1016/j.smim.2011.08.018.

    Article  CAS  PubMed  Google Scholar 

  40. Taddeo A, Khodadadi L, Voigt C, Mumtaz IM, Cheng Q, Moser K, et al. Long-lived plasma cells are early and constantly generated in New Zealand Black/New Zealand White F1 mice and their therapeutic depletion requires a combined targeting of autoreactive plasma cells and their precursors. Arthritis Res Ther. 2015;17:39. https://doi.org/10.1186/s13075-015-0551-3.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moore N, Moreno Gonzales M, Bonner K, Smith B, Park W, Stegall M. Impact of CXCR4/CXCL12 blockade on normal plasma cells in vivo. Am J Transplant. 2017;17(6):1663–9. https://doi.org/10.1111/ajt.14236.

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen DC, Garimalla S, Xiao H, Kyu S, Albizua I, Galipeau J, et al. Factors of the bone marrow microniche that support human plasma cell survival and immunoglobulin secretion. Nat Commun. 2018;9(1):3698. https://doi.org/10.1038/s41467-018-05853-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Z, Schuster SJ, Lacey SF, Milone MC, Monos D, Bhoj VG. Stable HLA antibodies following sustained CD19+ cell depletion implicate a long-lived plasma cell source. Blood Adv. 2020;4(18):4292–5. https://doi.org/10.1182/bloodadvances.2020002435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. •• Moreno Gonzales MA, Gandhi MJ, Schinstock CA, Moore NA, Smith BH, Braaten NY, et al. 32 doses of bortezomib for desensitization is not well tolerated and is associated with only modest reductions in anti-HLA antibody. Transplantation. 2017;101(6):1222–7. https://doi.org/10.1097/TP.0000000000001330. (A longer course of bortezomib was not found to be associated with desensitization in highly sensitized kidney recipient.)

    Article  CAS  PubMed  Google Scholar 

  45. Pineiro GJ, De Sousa-Amorim E, Sole M, Rios J, Lozano M, Cofan F, et al. Rituximab, plasma exchange and immunoglobulins: an ineffective treatment for chronic active antibody-mediated rejection. BMC Nephrol. 2018;19(1):261. https://doi.org/10.1186/s12882-018-1057-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kwun J, Matignon M, Manook M, Guendouz S, Audard V, Kheav D, et al. Daratumumab in sensitized kidney transplantation: potentials and limitations of experimental and clinical use. J Am Soc Nephrol. 2019;30(7):1206–19. https://doi.org/10.1681/ASN.2018121254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Doberer K, Klager J, Gualdoni GA, Mayer KA, Eskandary F, Farkash EA, et al. CD38 antibody daratumumab for the treatment of chronic active antibody-mediated kidney allograft rejection. Transplantation. 2021;105(2):451–7. https://doi.org/10.1097/TP.0000000000003247.

    Article  CAS  PubMed  Google Scholar 

  48. Spica D, Junker T, Dickenmann M, Schaub S, Steiger J, Rufli T, et al. Daratumumab for treatment of antibody-mediated rejection after ABO-incompatible kidney transplantation. Case Rep Nephrol Dial. 2019;9(3):149–57. https://doi.org/10.1159/000503951.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Tambur AR, Schinstock C, Maguire C, Lowe D, Smith B, Stegall M. Estimating alloantibody levels in highly sensitized renal allograft candidates: using serial dilutions to demonstrate a treatment effect in clinical trials. Am J Transplant. 2021;21(3):1278–84. https://doi.org/10.1111/ajt.16363. (In this study involving 20 kidney recipients with a calculated panel-reactive antibody (cPRA) greater than 99.9%, cPRA was normalized through serial serum dilutions and was found to have increased sensitivity to detect antibody reductions compared to cPRA alone.)

    Article  CAS  PubMed  Google Scholar 

  50. Stegall MD, Smith B, Bentall A, Schinstock C. The need for novel trial designs, master protocols, and research consortia in transplantation. Clin Transplant. 2020;34(1): e13759. https://doi.org/10.1111/ctr.13759.

    Article  PubMed  Google Scholar 

  51. Bray RA, Gebel HM, Townsend R, Roberts ME, Polinsky M, Yang L, et al. De novo donor-specific antibodies in belatacept-treated vs cyclosporine-treated kidney-transplant recipients: post hoc analyses of the randomized phase III BENEFIT and BENEFIT-EXT studies. Am J Transplant. 2018;18(7):1783–9. https://doi.org/10.1111/ajt.14721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wojciechowski D, Vincenti F. Current status of costimulatory blockade in renal transplantation. Curr Opin Nephrol Hypertens. 2016;25(6):583–90. https://doi.org/10.1097/MNH.0000000000000268.

    Article  CAS  PubMed  Google Scholar 

  53. van der Zwan M, Hesselink DA, van den Hoogen MWF, Baan CC. Costimulation blockade in kidney transplant recipients. Drugs. 2020;80(1):33–46. https://doi.org/10.1007/s40265-019-01226-6.

    Article  PubMed  Google Scholar 

  54. Klintmalm GB, Feng S, Lake JR, Vargas HE, Wekerle T, Agnes S, et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. Am J Transplant. 2014;14(8):1817–27. https://doi.org/10.1111/ajt.12810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Stegall.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mujtahedi, S.S., Yigitbilek, F., Ozdogan, E. et al. Antibody-Mediated Rejection: the Role of Plasma Cells and Memory B Cells. Curr Transpl Rep 8, 272–280 (2021). https://doi.org/10.1007/s40472-021-00342-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-021-00342-1

Keywords

Navigation