Skip to main content

Advertisement

Log in

Immunosuppression for Lung Transplantation: Current and Future

  • Thoracic Transplantation (J Kobashigawa, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

The number of lung transplantations performed worldwide continues to increase. There is a growing need in these patients for more effective immunosuppressive medications with less toxicity.

Recent Findings

This review article summarizes the recent studies and developments in lung transplant immunosuppression. Novel immunosuppressive medications and strategies used in other solid organ transplantations are being trialed in lung transplantation. This includes the use of co-stimulation blockers like belatacept and mTOR inhibitors like everolimus. Calcineurin-sparing regimens have been described in an attempt to minimize nephrotoxicity. Assays to measure the bioactivity of immunosuppressive medications to determine the global immune competence, such as Immuknow assay and Gamma interferon response are gaining traction.

Summary

Immunosuppression in lung transplant is evolving with the development of newer drugs and promising strategies to optimize immunosuppression. Further studies with multicenter randomized trials are required to increase the strength of the evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

mTOR:

Mammalian target of rapamycin

ACR:

Acute cellular rejection

Il-2R:

Interleukin-2 receptor

CNI:

Calcineurin Inhibitors

TAC:

Tacrolimus

BOS:

Bronchiolitis obliterans syndrome

AZA:

Azathioprine

6MP:

6-Mercaptopurine

MMF:

Mycophenolate mofetil

MPA:

Mycophenolic acid

SRL:

Sirolimus

FKBP12:

FK506 binding protein 12

BELA:

Belatacept

CTLA4:

Cytotoxic T-lymphocyte–associated antigen 4 (CTLA4)

TTP:

Thrombotic thrombocytopenic purpura

PRES:

Posterior reversible encephalopathy syndrome

ER:

Extended-release

TTR:

Time-in-therapeutic-range

CLAD:

Chronic lung allograft disease

AKI:

Acute kidney injury

GFR:

Glomerular filtration rate

CMV:

Cytomegalovirus

AMR:

Antibody mediated rejection

BTZ:

Bortezomib

DSA:

Donor specific antibodies

CFZ:

Carfilzomib

IVIG:

Intravenous immunoglobulin

ECU:

Eculizumab

IFN-Ɣ:

Plasma interferon-gamma

ISHLT:

the International Society for Heart and Lung Transplantation

References

Papers of particular interest, published recently, have been highlighted as: •• Of major Importance

  1. Hardy JD, Webb WR, Dalton ML, Walker GR. Lung homotransplantation in man. JAMA. 1963;186:1065–74.

    Article  PubMed  CAS  Google Scholar 

  2. Chambers DC, Yusen RD, Cherikh WS, Goldfarb SB, Kucheryavaya AY, Khusch K, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult lung and heart-lung transplantation Report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1047–59. https://doi.org/10.1016/j.healun.2017.07.016.

    Article  PubMed  Google Scholar 

  3. Hachem RR, Edwards LB, Yusen RD, Chakinala MM, Alexander Patterson G, Trulock EP. The impact of induction on survival after lung transplantation: an analysis of the International Society for Heart and Lung Transplantation Registry. Clin Transpl. 2008;22(5):603–8. https://doi.org/10.1111/j.1399-0012.2008.00831.x.

    Article  Google Scholar 

  4. Penninga L, Møller CH, Penninga EI, Iversen M, Gluud C, Steinbrüchel DA. Antibody induction therapy for lung transplant recipients. Cochrane Database Syst Rev. 2013;11:CD008927. https://doi.org/10.1002/14651858.CD008927.pub2.

    Article  Google Scholar 

  5. Penninga L, Penninga EI, Møller CH, Iversen M, Steinbrüchel DA, Gluud C. Tacrolimus versus cyclosporin as primary immunosuppression for lung transplant recipients. Cochrane Database Syst Rev. 2013;5:CD008817. https://doi.org/10.1002/14651858.CD008817.pub2.

    Article  Google Scholar 

  6. Wiesner R, Rabkin J, Klintmalm G, McDiarmid S, Langnas A, Punch J, et al. A randomized double-blind comparative study of mycophenolate mofetil and azathioprine in combination with cyclosporine and corticosteroids in primary liver transplant recipients. Liver Transpl. 2001;7(5):442–50. https://doi.org/10.1053/jlts.2001.23356.

    Article  PubMed  CAS  Google Scholar 

  7. Kobashigawa J, Miller L, Renlund D, Mentzer R, Alderman E, Bourge R, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation. 1998;66(4):507–15.

    Article  PubMed  CAS  Google Scholar 

  8. Zuckermann A, Klepetko W, Birsan T, Taghavi S, Artemiou O, Wisser W, et al. Comparison between mycophenolate mofetil- and azathioprine-based immunosuppressions in clinical lung transplantation. J Heart Lung Transplant. 1999;18(5):432–40.

    Article  PubMed  CAS  Google Scholar 

  9. Wiesel M, Carl S. A placebo controlled study of mycophenolate mofetil used in combination with cyclosporine and corticosteroids for the prevention of acute rejection in renal allograft recipients: 1-year results. The European Mycophenolate Mofetil Cooperative Study Group. J Urol. 1998;159(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  10. McNeil K, Glanville AR, Wahlers T, Knoop C, Speich R, Mamelok RD, et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation. 2006;81(7):998–1003. https://doi.org/10.1097/01.tp.0000202755.33883.61.

    Article  PubMed  CAS  Google Scholar 

  11. Schwarz S, Jaksch P, Klepetko W, Hoetzenecker K. Immunosuppression after lung transplantation: the search for the holy grail continues. J Thorac Dis. 2017;9(6):1412–4. https://doi.org/10.21037/jtd.2017.04.66.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Glanville AR, Aboyoun C, Klepetko W, Reichenspurner H, Treede H, Verschuuren EA, et al. Three-year results of an investigator-driven multicenter, international, randomized open-label de novo trial to prevent BOS after lung transplantation. J Heart Lung Transplant. 2015;34(1):16–25. https://doi.org/10.1016/j.healun.2014.06.001.

    Article  PubMed  Google Scholar 

  13. Fine NM, Kushwaha SS. Recent advances in mammalian target of rapamycin inhibitor use in heart and lung transplantation. Transplantation. 2016;100(12):2558–68. https://doi.org/10.1097/TP.0000000000001432.

    Article  PubMed  CAS  Google Scholar 

  14. King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation. 2003;75(9):1437–43. https://doi.org/10.1097/01.TP.0000064083.02120.2C.

    Article  PubMed  Google Scholar 

  15. Snell GI, Valentine VG, Vitulo P, Glanville AR, McGiffin DC, Loyd JE, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant. 2006;6(1):169–77. https://doi.org/10.1111/j.1600-6143.2005.01134.x.

    Article  PubMed  CAS  Google Scholar 

  16. Bhorade S, Ahya VN, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. Am J Respir Crit Care Med. 2011;183(3):379–87. https://doi.org/10.1164/rccm.201005-0775OC.

    Article  PubMed  CAS  Google Scholar 

  17. Vincenti F, Larsen C, Durrbach A, Wekerle T, Nashan B, Blancho G, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353(8):770–81. https://doi.org/10.1056/NEJMoa050085.

    Article  PubMed  CAS  Google Scholar 

  18. Vincenti F, Charpentier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010;10(3):535–46. https://doi.org/10.1111/j.1600-6143.2009.03005.x.

    Article  PubMed  CAS  Google Scholar 

  19. Vincenti F, Larsen CP, Alberu J, Bresnahan B, Garcia VD, Kothari J, et al. Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am J Transplant. 2012;12(1):210–7. https://doi.org/10.1111/j.1600-6143.2011.03785.x.

    Article  PubMed  CAS  Google Scholar 

  20. •• Iasella CJ, Winstead RJ, Moore CA, Johnson BA, Feinberg AT, Morrell MR, et al. Maintenance belatacept-based immunosuppression in lung transplantation recipients who failed calcineurin inhibitors. Transplantation. 2018;102(1):171–7. https://doi.org/10.1097/TP.0000000000001873. This case series of 11 lung transplant recipients who were changed to belatacept-based immunosuppression. This study demonstrated resonable results in this cohort of patients who did not tolerate CNI or who failed CNI.

    Article  PubMed  CAS  Google Scholar 

  21. Timofte I, Terrin M, Barr E, Sanchez P, Kim J, Reed R, et al. Belatacept for renal rescue in lung transplant patients. Transpl Int. 2016;29(4):453–63. https://doi.org/10.1111/tri.12731.

    Article  PubMed  CAS  Google Scholar 

  22. Kovarik JM, Mueller EA, van Bree JB, Tetzloff W, Kutz K. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci. 1994;83(3):444–6.

    Article  PubMed  CAS  Google Scholar 

  23. Iacono AT, Johnson BA, Grgurich WF, Youssef JG, Corcoran TE, Seiler DA, et al. A randomized trial of inhaled cyclosporine in lung-transplant recipients. N Engl J Med. 2006;354(2):141–50. https://doi.org/10.1056/NEJMoa043204.

    Article  PubMed  Google Scholar 

  24. Groves S, Galazka M, Johnson B, Corcoran T, Verceles A, Britt E, et al. Inhaled cyclosporine and pulmonary function in lung transplant recipients. J Aerosol Med Pulm Drug Deliv. 2010;23(1):31–9. https://doi.org/10.1089/jamp.2009.0748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Purev E, Gormley N, Ramos C, Reger R, Tian X, Cho E et al. Inhaled cyclosporine solution for the treatment of bronchiolitis obliterans following hematopoietic stem cell transplantation (HSCT) or lung transplantation. Biol Blood Marrow Transplant 2015. p. S347–S8.

  26. Patel N, et al. Overview of extended release tacolimus in solid organ transplantation. World J Transplant. 2016;6:144–54.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ho E, et al. Once-daily extended release versus twice-daily standard release tacrolimus in kidney transplant recipients: a systematic review. Transplantation. 2013;95(9):1120–8.

    Article  PubMed  CAS  Google Scholar 

  28. Cea M. Increasing tacrolimus time-in-therapeutic range is associated with reduced chronic lung allograft dysfunction. J Heart Lung Transplant. 2017;S411

  29. Méndez A, Berastegui C, López-Meseguer M, Monforte V, Bravo C, Blanco A, et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. Transplantation. 2014;97(3):358–62. https://doi.org/10.1097/01.TP.0000435699.69266.66.

    Article  PubMed  CAS  Google Scholar 

  30. Soto GAC, Ruiz-Antorán B, Laporta R, Sancho A, Lázaro MT, Herrera CP, et al. Dose increase needed in most cystic fibrosis lung transplantation patients when changing from twice- to once-daily tacrolimus oral administration. Eur J Clin Pharmacol. 2015;71(6):715–22. https://doi.org/10.1007/s00228-015-1859-2.

    Article  PubMed  CAS  Google Scholar 

  31. Ross DJ. Monthly basiliximab treatment improves chronic renal dysfunction with allograft stability after lung transplantation. J Heart Lung Transplant; 2017. p. S411.

  32. Högerle BA, Kohli N, Habibi-Parker K, Lyster H, Reed A, Carby M, et al. Challenging immunosuppression treatment in lung transplant recipients with kidney failure. Transpl Immunol. 2016;35:18–22. https://doi.org/10.1016/j.trim.2016.02.002.

    Article  PubMed  CAS  Google Scholar 

  33. Peddi VR, Wiseman A, Chavin K, Slakey D. Review of combination therapy with mTOR inhibitors and tacrolimus minimization after transplantation. Transplant Rev (Orlando). 2013;27(4):97–107. https://doi.org/10.1016/j.trre.2013.06.001.

    Article  Google Scholar 

  34. •• Strueber M, Warnecke G, Fuge J, Simon AR, Zhang R, Welte T, et al. Everolimus versus mycophenolate Mofetil De Novo after lung transplantation: a prospective, randomized, open-label trial. Am J Transplant. 2016;16(11):3171–80. https://doi.org/10.1111/ajt.13835. This single center, prospective, randomized study in lung tranplant recipients demonstrated potential benefit of early initiation of everolimus based immunosuppression regimens.

    Article  PubMed  CAS  Google Scholar 

  35. Levine DJ, Glanville AR, Aboyoun C, Belperio J, Benden C, Berry GJ, et al. Antibody-mediated rejection of the lung: a consensus report of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2016;35(4):397–406. https://doi.org/10.1016/j.healun.2016.01.1223.

    Article  PubMed  Google Scholar 

  36. Kulkarni HS, Bemiss BC, Hachem RR. Antibody-mediated rejection in lung transplantation. Curr Transplant Rep. 2015;2(4):316–23. https://doi.org/10.1007/s40472-015-0074-5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Witt CA, Gaut JP, Yusen RD, Byers DE, Iuppa JA, Bennett Bain K, et al. Acute antibody-mediated rejection after lung transplantation. J Heart Lung Transplant. 2013;32(10):1034–40. https://doi.org/10.1016/j.healun.2013.07.004.

    Article  PubMed  Google Scholar 

  38. Snyder LD, Gray AL, Reynolds JM, Arepally GM, Bedoya A, Hartwig MG, et al. Antibody desensitization therapy in highly sensitized lung transplant candidates. Am J Transplant. 2014;14(4):849–56. https://doi.org/10.1111/ajt.12636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hayes D, Nicholson KL, Baker PB. Bortezomib for antibody-mediated rejection in a young lung transplant recipient. Pediatr Transplant. 2016;20(1):178–9. https://doi.org/10.1111/petr.12651.

    Article  PubMed  Google Scholar 

  40. Ensor CR, Yousem SA, Marrari M, Morrell MR, Mangiola M, Pilewski JM, et al. Proteasome inhibitor carfilzomib-based therapy for antibody-mediated rejection of the pulmonary allograft: use and short-term findings. Am J Transplant. 2017;17(5):1380–8. https://doi.org/10.1111/ajt.14222.

    Article  PubMed  CAS  Google Scholar 

  41. Dawson KL, Parulekar A, Seethamraju H. Treatment of hyperacute antibody-mediated lung allograft rejection with eculizumab. J Heart Lung Transplant. 2012;31(12):1325–6. https://doi.org/10.1016/j.healun.2012.09.016.

    Article  PubMed  Google Scholar 

  42. Burckart GJ, Hutchinson IV, Zeevi A. Pharmacogenomics and lung transplantation: clinical implications. Pharmacogenomics J. 2006;6(5):301–10. https://doi.org/10.1038/sj.tpj.6500376.

    Article  PubMed  CAS  Google Scholar 

  43. Yousem SA, Sartori D, Sonmez-Alpan E. Multidrug resistance in lung allograft recipients: possible correlation with the development of acute and chronic rejection. J Heart Lung Transplant. 1993;12(1 Pt 1):20–6.

    PubMed  CAS  Google Scholar 

  44. Keshavjee S, Trulock E, Doyle R, Davis R, Golden J, McCurry K et al. Immunoregulatory influences on peripheral blood gene expression in lung transplant patients: the lung allograft rejection gene expression observational (Largo) study. J Heart Lung Transplant 2006. p. S78.

  45. Zeevi A, Lunz J. Cylex ImmuKnow cell function assay. Methods Mol Biol. 2013;1034:343–51. https://doi.org/10.1007/978-1-62703-493-7_21.

    Article  PubMed  CAS  Google Scholar 

  46. Kowalski RJ, Post DR, Mannon RB, Sebastian A, Wright HI, Sigle G, et al. Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation. 2006;82(5):663–8. https://doi.org/10.1097/01.tp.0000234837.02126.70.

    Article  PubMed  Google Scholar 

  47. Husain S, Raza K, Pilewski JM, Zaldonis D, Crespo M, Toyoda Y, et al. Experience with immune monitoring in lung transplant recipients: correlation of low immune function with infection. Transplantation. 2009;87(12):1852–7. https://doi.org/10.1097/TP.0b013e3181a75ad2.

    Article  PubMed  CAS  Google Scholar 

  48. Piloni D, Magni S, Oggionni T, Benazzo A, Stella G, Scudeller L, et al. Clinical utility of CD4+ function assessment (ViraCor-IBT ImmuKnow test) in lung recipients. Transpl Immunol. 2016;37:35–9. https://doi.org/10.1016/j.trim.2016.04.001.

    Article  PubMed  CAS  Google Scholar 

  49. Shino MY, Weigt SS, Saggar R, Elashoff D, Derhovanessian A, Gregson AL, et al. Usefulness of immune monitoring in lung transplantation using adenosine triphosphate production in activated lymphocytes. J Heart Lung Transplant. 2012;31(9):996–1002. https://doi.org/10.1016/j.healun.2012.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  50. •• Mian M, Natori Y, Ferreira V, Selzner N, Husain S, Singer L, et al. Evaluation of a novel global immunity assay to predict infection in organ transplant recipients. Clin Infect Dis. 2017; https://doi.org/10.1093/cid/cix1008. This article describes a novel assay of plasma gamma interferon in immunosuppressed lung transplant recipients. A low level of gamma interfoeron was very predicitve of infection.

  51. Webber AB, Vincenti F. An update on Calcineurin inhibitor-free regimens: the need persists, but the landscape has changed. Transplantation. 2016;100(4):836–43. https://doi.org/10.1097/TP.0000000000000872.

    Article  PubMed  CAS  Google Scholar 

  52. Banga A, Mohanka M, Mullins J, Bollineni S, Kaza V, Torres F, et al. Association of pretransplant kidney function with outcomes after lung transplantation. Clin Transpl. 2017;31(5) https://doi.org/10.1111/ctr.12932.

  53. Wigfield CH, Buie V, Onsager D. “Age” in lung transplantation: factors related to outcomes and other considerations. Curr Pulmonol Rep. 2016;5:152–8. https://doi.org/10.1007/s13665-016-0151-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Grimm JC, Lui C, Kilic A, Valero V, Sciortino CM, Whitman GJ, et al. A risk score to predict acute renal failure in adult patients after lung transplantation. Ann Thorac Surg. 2015;99(1):251–7. https://doi.org/10.1016/j.athoracsur.2014.07.073.

    Article  PubMed  Google Scholar 

Download references

Funding

CCK is supported by the Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN and the NHLBI grant K23 HL128859 from the National Institutes of Health. The manuscript’s contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassie C. Kennedy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Thoracic Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrashekaran, S., Crow, S.A., Shah, S.Z. et al. Immunosuppression for Lung Transplantation: Current and Future. Curr Transpl Rep 5, 212–219 (2018). https://doi.org/10.1007/s40472-018-0199-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-018-0199-4

Keywords

Navigation