Skip to main content

Advertisement

Log in

Are We Ready for a Human Head Transplant? The Obstacles That Must Be Overcome

  • Controversies (V Gorantla and R Barth, Section Editors)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Saving an individual’s life by replacing his/her terminally diseased body with a healthy donor body would be an extraordinary scientific achievement. However, body-to-head transplantation (BHT) is neither a conventional proposal nor necessarily a logical “next step” in transplantation medicine. This review highlights the major hurdles standing in the way of performing human BHT.

Recent Findings

Recent human BHT publicity was initiated by Sergio Canavero’s TED talk “Head Transplantation: The Future Is Now” (At: https://www.youtube.com/watch?v=_EHCHv5u3O4) and a number of public interviews promising to perform the first human case by December 2017, despite little research and public discourse on this subject. Both are necessary in the development of innovative and perhaps paradigm-shifting surgeries.

Summary

Relatively little research has been conducted on BHT. This review discusses several major questions that have yet to be answered such as viability of spinal cord reconnection, immunological issues related to head-brain-body rejection, ethical and psychosocial issues posing questions regarding informed consent, and psychological consequences. The ethical, surgical, immunological, and psychosocial requisites to perform human BHT successfully are extraordinarily complex and at this time lack adequate experimental foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: ••Of major importance

  1. Barker JH, Frank JM, Leppik L. Head transplantation: editorial commentary. CNS Neuroscience & Therapeutics. 2015;21:613–4.

    Article  Google Scholar 

  2. Guthrie C. Blood vessel surgery and it applications. In: Arnold E, editor. International medical monographs. London: Longmans, Green & Co; 2012.

    Google Scholar 

  3. Konstantinov IE. A mystery of Vladimir P. Demikhov: the 50th anniversary of the first intrathoracic transplantation. Ann Thorac Surg. 1998;65(4):1171–7.

    Article  CAS  PubMed  Google Scholar 

  4. McCrone J. Monkey business. Lancet Neurol. 2003;2(12):772. https://doi.org/10.1016/S1474-4422(03)00596-9.

    Article  PubMed  Google Scholar 

  5. White RJ, Wolin LR, Massopust LC Jr, et al. Primate ceohalic trnsplanattion: neurogenic separation, vascular association. Tranpl Proc. 1971;3:602–4.

    CAS  Google Scholar 

  6. Bennett C Letter to the editor. Cruel and unneeded. New York Times, August 26, 1995

  7. Hirabayashi S, Harri K, Sakurai A, et al. An experimental study of craniofacial growth in a heterotopic rat head transplant. Plast Reconstr Surg. 1988;82:236–43.

    Article  CAS  PubMed  Google Scholar 

  8. Sugawara Y, Hirabayashi S, Harri K. Caraniofacial growth in a whole rat head transplant: how does a non-functional head grow? J Craniofac Genet Dev Biol. 1999;19:102–8.

    CAS  PubMed  Google Scholar 

  9. Niu A, Shimazaki K, Sugawara Y, Nabufumi K. Heterotopic graft of infant rat brain as an ischemic model for prolonged whole brain ischemia. Neurosci Lett. 2002;325:37–41.

    Article  CAS  PubMed  Google Scholar 

  10. Ren XPX, Ye YJ, Li PW, Shen ZI, Han KC, Song Y. Head transplantation in mouse model. CNS Neurosci Ther. 2015;21:615–8.

    Article  PubMed  Google Scholar 

  11. Canavero S. HEAVEN: the head anastomosis venture project outline for the first human head transplantation with spinal linkage (GEMINI). Surg Neurol Int. 2013;4:S335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Canavero S. The “Gemini” spinal cord fusion protocol: reloaded. Surg Neurol Int. 2015;6:18. https://doi.org/10.4103/2152-7806.150674.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Canavero S, Ren X, Kim CY, Rosati E. Neurologic foundations of spinal cord fusion (GEMINI). Surgery. 2016;160:11–9.

    Article  PubMed  Google Scholar 

  14. Canavero S, Ren X. Houston, GEMINI has landed: spinal cord fusion achieved. Surg Neurol Int. 2016;7: http://surgicalneurologyint.com/surgicalint-articles/houston-gemini-has-landed-spinal-cord-fusion-achieved:626.

    Article  Google Scholar 

  15. Canavero S Head Transplantation: and the QUEST for IMMORTALITY, Nov 24, (2014) ISBN-10: 1503243222. Available at: https://www.amazon.com/Head-Transplantation-IMMORTALITY-sergio-canavero/dp/1503243222

  16. •• Furr A, Hardy HA, Barret JP, Barker JH. Surgical, ethical, and psychosocial considerations in human head transplantation. Int J Surg. 2017;41:190–5. https://doi.org/10.1016/j.ijsu.2017.01.077. This article is the most recent summary of the surgical, and most importantly ethical and psychosocial implications of new transplantation techniques such as head transplantation. It raises critical questions that must be answered before novel medical and surgical techniques can be undertaken and accepted by the public.

    Article  PubMed  PubMed Central  Google Scholar 

  17. •• Hardy MA, Furr A, Barret JP, Barker JH. The immunologic considerations in human head transplantation. Int J Surg. 2017;41:196–202. https://doi.org/10.1016/j.ijsu.2017.01.084. This article summarizes the available immunologic methods and techniques that may be useful and effective in head transplantation as they have been in other composite tissue allografts. It focuses on the neurologic effects and possible toxicities of the various approaches and emphasizes the need for operative tolerance induction as the safest and probably achievable method to permit the highly experimental head transplantation.

    Article  PubMed  Google Scholar 

  18. Solomon RA, Smith CR, Raps EC, Young WL, Stone GJ, Fink ME. Deep hypothermic circulatory arrest for the management of complex anterior and posterior circulation aneurysms. Neurosurgery. 1991;29(5):732–8.

    Article  CAS  PubMed  Google Scholar 

  19. Solomon RA. Principles of aneurysm surgery: cerebral ischemic protection, hypothermia, and circulatory arrest. Clin Neurosurg. 1994;41:351–63.

    CAS  PubMed  Google Scholar 

  20. Reichle ME. The pathophysiology of brain ischemia. Ann Neurol. 1983;13:2–10.

    Article  Google Scholar 

  21. Ren XP, Orlova EV, Maevsky EI, Bonicalzi V, Canavero S. Brain protection during sephalosomatic anastomosis. Surgery. 2016;160(1):5–10. https://doi.org/10.1016/j.surg.2016.01.026.

    Article  PubMed  Google Scholar 

  22. Mao G, Ren P, Wang G, Yan F, Zhang Y. J Mol Neurosci. 2016;61(2):152–8. https://doi.org/10.1007/s12031-016-0871-z.

    Article  PubMed  Google Scholar 

  23. Medically induced coma vs. sedation. Lifeline to Modern Medicine, American Society of Anesthesiologists. Available at: http://www.asahq.org/lifeline/anesthesia%20topics/medically%20induced%20coma%20and%20sedation

  24. Kelly DF, Goodale DB, Williams J, Herr DL, Chappell ET, Rosner MJ, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J. Neurosurg. 1999;90(6):1042–52.

  25. Rossaint J, Rossaint R, Weis J, Fries M, Rex S, Coburn M. Propofol: neuroprotection in an in vitro model of traumatic brain injury. CNS Drugs. 2003;17(4):235–72.

    Article  Google Scholar 

  26. McKeage K, Perry CM. Propofol: a review of its use in intensive care sedation of adults. Crit Care. 2009;13(2):R61. https://doi.org/10.1186/cc7795.

    Article  Google Scholar 

  27. Keyvan-Fouladi N, Raisman G, Li Y. Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J Neurosci. 2003;23:9428–34.

    Article  CAS  PubMed  Google Scholar 

  28. •• Tobakow P, Raisman G, Fortuna W, et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transp. 2014;23:1631–55. This article summarizes a possible method of accelerating regeneration of sharply transected (surgically) cord with the use olfactory ensheathing cells of the recipient. The reported case illustrates clinical success after intense rehabilitation and most importantly is based on extensive and remarkable experimental animal studies.

    Article  Google Scholar 

  29. Oppenheim JS, Spitzer DE, Winfree CJ. Spinal cord bypass surgery using peripheral nerve transfers: review of translational studies and a case report on its use following complete spinal cord injury in a human. Neurosurg Focus. 2009;26:E6.

    Article  PubMed  Google Scholar 

  30. Bergens RB, Toombs JP, Blight AR. Effects of applied electric fields on clinical cases of complete paraplegia in dogs. J Restor Neurol Neurosci. 1993;5:305–22.

    Google Scholar 

  31. Brossot R, Galleri P, Le Bot MP, et al. Clinical experience with functional electrical stimulation-assisted gait with parastep in spinal cord injured patients. Spine. 2000;25:501–8.

    Article  Google Scholar 

  32. Hamid S, Hyyek R. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J. 2008;17:1256–69.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Canavero S, Ren XP. The spark of life: engaging the cortico-truncoreticulo-propriospinal pathway by electrical stimulation. CNS Neurosci Ther. 2016;22:260–1.

    Article  PubMed  Google Scholar 

  34. Ye Y, Kim CY, Miao Q, Ren X. Fusogen-assisted rapid reconstitution of anatomophysiologic continuity of the transected spinal cord. Surgery. 2016;160:20–5.

    Article  PubMed  Google Scholar 

  35. Estrada V, Brazda N, Schmitz C, Heller S, Blazyca H, Martini R. Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation. Neurobiol Dis. 2014;67:165–79.

    Article  CAS  PubMed  Google Scholar 

  36. Kim C, Sikkema WKA, Hwang I, Oh H, Kim UJ, Lee BH, et al. Spinal cord fusion with PEG-GNRs (TexasPEG): neurophysiological recovery in 24 hours in rats. Surg Neurol Int. 2016;13, 7

  37. Gerasimenko YP, Lu DC, Morteza M, et al. Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma. 2015;32:1968–80.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Capogrosso M. A brain spine interface alleviating gait deficits alter spinal cord injury in primates. Nature. 2016;539:284–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alam M, Rodrigues W, Pham BN, Thakor NV. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: recent progress and future perspectives. Brain Research. 2016;1646:25–33.

    Article  CAS  PubMed  Google Scholar 

  40. Szalavitz, M. The brain-immunology axis. The Dana Foundation. http://www.dana.org/Cerebrum/Default.aspx?id=39217, (2002) (accessed 11/08/2016).

  41. Glezer I, Rivest S. Glucocoticoids: protectors of the brain during innate immune responses. Neuroscientist. 2004;10:538–52.

    Article  CAS  PubMed  Google Scholar 

  42. van Vliet EA, Forte G, Holtman L, den Burger JC, Sinjewel A, de Vries HE, et al. Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia. 2012;7:1254–63. https://doi.org/10.1111/j.1528-1167.2012.03513.x.

  43. Witt KA, Sandoval KE. Steroids and the blood-brain barrier: therapeutic implications. Adv Pharmacol. 2014;71:361–90. https://doi.org/10.1016/bs.apha.2014.06.018.

    Article  CAS  PubMed  Google Scholar 

  44. Chi, OZ mailto:chi@rwjms.rutgers.edu, Mellender SJ, Barsoum http://www.sciencedirect.com/science/article/pii/S0304394016301987 - aff0005 S, Liu X, Damito http://www.sciencedirect.com/science/article/pii/S0304394016301987 - aff0010 S, Weiss. http://www.sciencedirect.com/science/article/pii/S0304394016301987 - aff0010 HR Adv Pharmacol. Effects of rapamycin pretreatment on blood-brain barrier disruption in cerebral ischemia-reperfusion. (1979) J Clin Invest 64(1): 145–154. doi: https://doi.org/10.1172/JCI109433 PMCID: PMC372100.

  45. O’Neill LA. When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity. 2008;29:12–20.

    Article  PubMed  Google Scholar 

  46. Nadeau S, Rivest S. Glucocorticoids play a fundamental role in protecting the human brain during innate immune response. J Neurosci. 2003;23:5536–44.

    Article  PubMed  Google Scholar 

  47. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA. 2003;100:8514–9.

  48. Boivin A, et al. Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci. 2007;27:12396–406.

    Article  Google Scholar 

  49. Lalancette-Herbert M, Phaneuf D, Soucy G, Weng YC, Kriz J. Live imaging of Toll-like receptor 2 response in cerebral ischemia reveals a role for olfactory bulb microglia as modulators of inflammation. Brain. 2009;132:940–54.

    Article  Google Scholar 

  50. Jones JW, Gruber SA, Barker JH, Breidenbach WC. Successful hand transplantation: one-year follow-up. N Engl J Med. 2000;343(7):468–73.

    Article  CAS  PubMed  Google Scholar 

  51. Dubernard J-M, Lengele B, Morelon E, et al. Outcomes 18 months after the first human partial face transplantation. (2007) N Engl J Med 357:2451Y2460.

  52. Brandacher G, Ninkovic M, Piza-Katzer H, et al. The Innsbruck Hand Transplant Program: update at 8 years after the first transplant. (2009) Transplant Proc 41:491Y494.

  53. Vasilic D, Alloway RR, Barker JH, Furr A, Ashcroft R, Banis JC Jr, et al. Risk assessment of immunosuppressive therapy in facial transplantation. Plast Reconstr Surg. 2007;120(3):657–68.

  54. Murray JE. The establishment of composite tissue allotransplantation as a clinical reality. In: Hewitt CW, Lee WPA, editors. Transplantation of composite tissue allografts. New York: Springer; 2008.

    Google Scholar 

  55. Pomahac B, Pribaz J, Eriksson E, Bueno E, Rodrigo Diaz-Siso J, Rybicki FJ, et al. Three patients with full facial transplantation. N Engl J Med. 2012;366:715–22 http://www.nejm.org/toc/nejm/366/8/. https://doi.org/10.1056/NEJMoa1111432.

  56. Barker JH, Vossen M, Banis JC Jr. The technical, immunological, and ethical feasibility of face transplantation. Int J Surg. 2004;2:8–12.

    Article  Google Scholar 

  57. Ustuner ET, Zdichavsky M, Ren X, et al. Long-term composite tissue allograft survival in a porcine model with cyclosporine/mycophenolate mofetil therapy. Transplantation. 1998;66:1581–7.

    Article  CAS  PubMed  Google Scholar 

  58. Gander B, Brown CS, Vasilic D, et al. Composite tissue allotransplantation of the hand and face: a new frontier in transplant and reconstructive surgery. Transpl Int. 2006;19:868–80.

    Article  PubMed  Google Scholar 

  59. Chandraker A, Arscott R, Murphy G, Lian C, Bueno E, Marty F, et al. Face transplantation in a highly sensitized recipient. Mil Med. 2016;181(5 Suppl):221–6. https://doi.org/10.7205/MILMED-D-15-00136.

  60. Hivelin M, Siemionow M, Grimbert P, et al. Extracorporeal photopheresis: from solid organs to face transplantation. (2009) Transpl Immunol 21:117Y128.

  61. Leonard DA, Gordon CR, Sachs DH, Cetrulo CL Jr. Immunobiology of face transplantation. J Craniofac Surg. 2012;23(1):268–71. https://doi.org/10.1097/SCS.0b013e318241b8e0.

    Article  PubMed  Google Scholar 

  62. Lantieri L, Hivelin M, Audard V, et al. Feasibility, reproducibility, risks, and benefits of face transplantation: a prospective study of outcomes. (2011) Am J Transplant 11:367Y378.

  63. Girlanda, R., Complications of post-transplant immunosuppression, Chapter 33 in Regenerative Medicine and Tissue Engineering, edited by Jose A. Andrades, ISBN 978-953-51-1108-5, Published: May 22, 2013 under CC BY 3.0 license, DOI: https://doi.org/10.5772/55614

  64. Zivkovic SA, Abdel-Hamid H. Neurologic manifestations of transplant complications. Neurol Clin. 2010;28:235–51.

    Article  PubMed  Google Scholar 

  65. Dhar R, Human T. Central nervous system complications after transplantation. Neurol Clin. 2011;29:943–72.

    Article  PubMed  Google Scholar 

  66. Brouns R, De Deyn PP. Neurological complications in renal failure: a review. Clin Neurol Neurosurg. 2004;107:1–16.

    Article  CAS  PubMed  Google Scholar 

  67. Nishiguchi T, Mochizuki K, Shakudo M, et al. CNS Complications of Hematopoietic Stem Cell Transplantation. AJR. 2009;192:1003–11.

    Article  PubMed  Google Scholar 

  68. Wijdicks EF. Neurotoxicity of immunosuppressive drugs. Liver Transpl. 2001;7:937–42.

    Article  CAS  PubMed  Google Scholar 

  69. Sun G-Y, Zhang Q-P, Li M-H, Wei. Effect of tacrolimus on neural behaviors and memory of rats with traumatic brain injury. Chin J Clin Rehabil. 2005;9(24):250–2.

    CAS  Google Scholar 

  70. Kochi S, Takanaga H, Matsuo H, Naito M, Tsuruo T, Sawada Y. Effect of cyclosporin A or tacrolimus on the function of blood-brain barrier cells. Eur J Pharmacol. 1999;372(3):287–95.

    Article  CAS  PubMed  Google Scholar 

  71. Benetoli A, Paganelli RA, Giordani F, Lima KC, Fávero Filho LA, Milani H. Effect of tacrolimus (FK506) on ischemia-induced brain damage and memory dysfunction in rats. Pharmacol Biochem Behav. 2004;77(3):607–15.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang W, Lü D, Wang S, Chongyang F. Effects of tacrolimus (FK506) on sciatic nerve regeneration in rats. Neural Regen Res. 2009;4(5):333–8. https://doi.org/10.3969/j.issn.1673-5374.2009.05.002.

    CAS  Google Scholar 

  73. Shahraki M, Mohammadi R, Najafpour A. Influence of tacrolimus (FK506) on nerve regeneration using allografts: a rat sciatic nerve model. J Oral MaxillofacSurg. 2015;73:1438–8.

  74. Tulaci KG, Tuzuner A, Karadas Emir H, Tatar İ, Sargon MF, Tulaci T, et al. The effect of tacrolimus on facial nerve injury: histopathological findings in a rabbit model. Am J Otolaryngol. 2016;37(5):393–7. https://doi.org/10.1016/j.amjoto.2016.06.003.

  75. Liu F, Zhang H, Zhang K, Lin X. Rapamycin promotes Schwann cell migration and nerve growth factor secretion. Neural Regeneration Research. 2014;9(6):602–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Abe N, Borson SH, Gambello MJ, Wang F, Cavalli V. Mammalian target of apamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J Biol Chem. 2010;285(36):28034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Myckatyn TM, Ellis RA, Grand AG, et al. The effects of rapamycin in murine peripheral nerve isografts and allografts. Plast Rec Surg. 2002;109:2405–17.

    Article  Google Scholar 

  78. Don AS, Tsang CK, Kazdoba TM, D’Arcangelo G, Young W, Zheng XF. Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries. Drug Discov Today. 2012;17:861–8.

    Article  PubMed  Google Scholar 

  79. Kawai T, Cosimi B, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008;358:353–61. https://doi.org/10.1056/NEJMoa071074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. •• Leventhal JR, Elliott MJ, Yolcu ES, et al. Immune reconstitution/immunocompetence in recipients of kidney plus hematopoietic stem/facilitating cell transplants. Transplantation. 2015;99(2):288–98. https://doi.org/10.1097/TP.0000000000000605. This article describes a novel approach to clinical tolerance induction based on the use of facilitator cells, which has resulted in discontinuation of immunosuppression in the majority of renal transplant recipients. This approach appears to be relatively safe and does not require complex pre-conditioning therapies.

    Article  CAS  PubMed  Google Scholar 

  81. Chhabra AY, Leventhal J, Merchak AR, Ildstad S. HSCT-based approaches for tolerance induction in renal transplant. Transplantation. 2017;101(11):2682–90. https://doi.org/10.1097/TP.0000000000001837.

    Article  PubMed  Google Scholar 

  82. Kaufman CL, Colson YL, Wren SM, Watkins S, Simmons RL, Ildstad ST. Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of allogeneic bone marrow stem cells. Blood. 1994;84(8):2436–46.

    CAS  PubMed  Google Scholar 

  83. Fugier-Vivier IJ, Rezzoug F, Huang Y, et al. Plasmacytoid precursor dendritic cells facilitate allogeneic hematopoietic stem cell engraftment. J Exp Med. 2005;201(3):373–83. https://doi.org/10.1084/jem.20041399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Miller JF. Immunological function of the thymus. Lancet London Engl. 1961;2(7205):748–9.

    Article  CAS  Google Scholar 

  85. Yamada K, Shimizu A, Utsugi R, et al. Thymic transplantation in miniature swine. II. Induction of tolerance by transplantation of composite thymokidneys to thymectomized recipients. J Immunol. 2000;164(6):3079–86.

    Article  CAS  PubMed  Google Scholar 

  86. Ali A, Garrovillo M, Jin MX, Hardy MA, Oluwole SF. MHC class I peptide-pulsed host dendritic cells induce antigen-specific acquired thymic tolerance to islet cells. Transplantation. 1999;69(2):221.

    Article  Google Scholar 

  87. Ali A, Garrovillo M, Jin MX, Hardy MA, Oluwole SF. Major histocompatibility complex class I peptide-pulsed host dendritic cells induce antigen-specific acquired thymic tolerance to islet cells. Transplantation. 2000;69(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  88. Oluwole OO, DePaz HA, Gopinathan R, Ali A, Garrovillo M, Jin MX, et al. Indirect allorecognition in acquired thymic tolerance: induction of donor-specific permanent acceptance of rat islets by adoptive transfer of allopeptide-pulsed host myeloid and thymic dendritic cells. Diabetes. 2001;50(7):1546–52.

  89. Ali A, Garrovillo M, Oluwole OO, DePaz HA, Gopinathan R, Engelstad K, et al. Mechanisms of acquired thymic tolerance: induction of transplant tolerance by adoptive transfer of in vivo allomhc peptide activated syngeneic T cells. Transplantation. 2001;71(10):1442–8.

  90. DePaz HA, Oluwole OO, Adeveri AO, Witkowski P, Jin MX, Hardy MA, et al. Immature rat myeloid dendritic cells generated in low dose granulocyte macrophage–colony stimulating factor prolong donor-specific rat cardiac allograft survival. Transplantation. 2003;75:521–8.

  91. Oluwole OO, DePaz HA, Adeyeri A, Jin MX, Hardy MA, Oluwole SF. Role of CD41CD251 regulatory T cells from naïve host thymus in the induction of acquired transplant tolerance by immunization with allo-major histocompatibility complex peptide. Transplantation. 2003;75(8):1136–42.

    Article  CAS  PubMed  Google Scholar 

  92. Liu J, Liu Z, Witkowski P, Vlad G, Manavalan JS, Scotto L, et al. Rat CD8+ FOXP3+ T suppressor cells mediate tolerance to allogenic heart transplants, inducing PIR-B in APC and rendering the graft invulnerable to rejection. Transpl Immunol. 2004;13:239–47.

  93. Oluwole SF, Fawwaz RA, Engelstad K, Wang TS, Hardy MA. Migration patterns of indium-111 labeled dendritic cells in the rat. Prog Clin Biol Res. 1990;355:247–56.

    CAS  PubMed  Google Scholar 

  94. Cuoco JA, Operation Frankenstein DJ. Ethical reflections of human head transplantation. Insights Neurosurg. 2016;1(2):1–4.

    Article  Google Scholar 

  95. Caplan A. Doctor Seeking to Perform Head Transplant is Out of his Mind. 2015; Forbes; p. 1. Available from: http://www.forbes.com/sites/arthurcaplan/2015/02/26/doctor-seeking-to-perform-head-transplant-is-out-of-his-mind/

  96. Saleh HM. Considerations regarding human head transplantation: a commentary. Int J Surg. 2017;41:205–6. https://doi.org/10.1016/j.jsu.2017.03.025.

    Article  PubMed  Google Scholar 

  97. Lamba N, Holsgrove D, Broekman ML. The history of head transplantation: a review. Acta Neurochir (Wien). 2016;12:2239–47.

    Article  Google Scholar 

  98. Pirnay P. Would a head transplant be acceptable? Rev Stomatol Chir Maxillofac Chir Orale. 2016;117(2):115–9. https://doi.org/10.1016/j.revsto.2016.01.008.

    CAS  PubMed  Google Scholar 

  99. Wiggins OP, Barker JH, Martinez S, et al. On the ethics of facial transplantation research. Am J Bioethics. 2004;4:1–12.

    Article  Google Scholar 

  100. Ren XP, Canavero S. From hysteria to hope: the rise of head transplantation. Int J Surg. 2017;41:203–4. https://doi.org/10.1016/j.ijsu.2017.02.003.

    Article  PubMed  Google Scholar 

  101. Strong VE, Forde KA, MacFadyen BV, Mellinger JD, Crookes PF, Sillin LF, et al. Ethical considerations regarding the implementation of new technologies and techniques in surgeries. Surg Endosc. 2014;28:2272–6. https://doi.org/10.1007/s00464-124-3644-1.

  102. The Audacious Plan to Save This Man’s Life by Transplanting His Head. (accessed Nov 2017) From: https://www.theatlantic.com/magazine/archive/2016/09/the-audacious-plan-to-save-this-mans-life-by-transplanting-his-head/492755/

  103. Čartolovni A, Spagnolo AG. Ethical considerations regarding head transplantation. Surg Neurol Int 2015;6:103 (including Commentary by Canavero).

  104. Cuoco JA. Reproductive implications of human head transplantation. Surg Neurol Int 27. 2016;7:48. https://doi.org/10.4103/2152-7806.181326.

    Article  Google Scholar 

  105. Tafran K. Religious barriers to head transplantation: an Islamic viewpoint. Int J Surg. 2017;43:92–3. https://doi.org/10.1016/j.ijsu.2017.05.043.

    Article  PubMed  Google Scholar 

  106. Niemelä J. What puts the ‘yuck’ in the yuck factor? Bioethics. 2011;25:267–79.

    Article  PubMed  Google Scholar 

  107. Canavero S. The “Gemini” spinal cord fusion protocol: reloaded. Surg Neurol Int. 2015;6:18.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Caplan A. Organ transplantation. In: From birth to death and bench toclinic: the hastings center bioethics briefing book for journalists, policymakers, and campaigns. Garrison: The Hastings Center; 2008.

    Google Scholar 

  109. •• Chang G, Pomahac B. Psychosocial changes 6 months after face transplantation. Psychosomatics. 2013;54(4):367–71. This is a brief summary of the approaches and concerns that clinicians should have regarding novel and unusual procedures, such as a head transplant, as illustrated by psychological progress and problems following face transplantation.

    Article  PubMed  Google Scholar 

  110. Smeets R, Rendenbach C, Birkelbach M, et al. Face transplantation: on the verge of becoming clinical routine? (2014) Biomed Res Int Volume 2014 Article ID 907272, 9 pages https://doi.org/10.1155/2014/907272 (accessed Nov. 11, 2017).

  111. Varela K, Thompson E, Rosch E. The embodied mind: cognitive science and human experience. Cambridge: MIT Press; 1991.

    Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Vijay Gorantla and Rolf Barth for reviewing this paper.

Funding

Professor Barker’s Professorship and research is funded in part by the Friedrichsheim Foundation (Stiftung Friedrichsheim) in Frankfurt am Main, Germany. Professor Hardy’s research is funded in part by NIH 5T32H2007874-19 and the Zimmer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Barker.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Controversies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barker, J.H., Furr, A., Barret, J.P. et al. Are We Ready for a Human Head Transplant? The Obstacles That Must Be Overcome. Curr Transpl Rep 5, 189–198 (2018). https://doi.org/10.1007/s40472-018-0196-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-018-0196-7

Keywords

Navigation