Skip to main content
Log in

Promise of Normothermia

  • OPTN Policy (K Andreoni, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of this Review

Normothermic ex vivo machine perfusion (NMP) is a novel preservation modality that has been investigated as a tool to preserve and protect organs from extended criteria donors (ECDs). This review summarizes the latest clinical and experimental progress in this field and tries to answer questions such as what are the future implications of NMP, what are its therapeutic potentials, and what are the limitations associated with this technology?

Recent Findings

New emerging data from clinical trials with NMP devices have demonstrated the safety and feasibility of this technology as well as its ability to preserve allograft function during the preservation period.

Summary

NMP provides potential solutions to limitations associated with the standard cold preservation modality. It maintains the allografts in a physiological state, prevents depletion of cellular energy sources, enables resuscitation and assessment of the ECD organ, and opens the door for future ex vivo therapeutic interventions. Hence, it should increase donor pool and positively impact transplant outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NMP:

Normothermic ex vivo perfusion

IRI:

Ischemia reperfusion injury

CSP:

Cold static preservation

MSCs:

Mesenchymal stem cells

ECD:

Extended criteria donors

DCD:

Donation after cardiac death

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Busuttil RW, Tanaka K. The utility of marginal donors in liver transplantation. Liver Transpl. 2003;9(7):651–63.

    Article  PubMed  Google Scholar 

  2. Heuer M, Zeiger A, Kaiser G, Mathé Z, Goldenberg A, Sauerland S, et al. Use of marginal organs in kidney transplantation for marginal recipients: too close to the margins of safety? Eur J Med Res BioMed Central. 2010;15(1):31.

    CAS  Google Scholar 

  3. Hata H, Fujita T, Ishibashi-Ueda H, Fukushima N, Nakatani T, Kobayashi J. Primary graft dysfunction after heart transplantation with high frequency of marginal donor hearts. J Hear Lung Transplant Elsevier. 2016;35(4):S298.

    Article  Google Scholar 

  4. Botha P, Trivedi D, Weir CJ, Searl CP, Corris PA, Dark JH, et al. Extended donor criteria in lung transplantation: impact on organ allocation. J Thorac Cardiovasc Surg. 2006;131(5):1154–60.

    Article  PubMed  Google Scholar 

  5. Jay C, Ladner D, Wang E, Lyuksemburg V, Kang R, Chang Y, et al. A comprehensive risk assessment of mortality following donation after cardiac death liver transplant - an analysis of the national registry. J Hepatol. 2011;55(4):808–13.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Puri V, Scavuzzo M, Guthrie T, Hachem R, Krupnick AS, Kreisel D, et al. Lung transplantation and donation after cardiac death: a single center experience. Ann Thorac Surg. 2009;88(5):1609–14. 5

    Article  PubMed  Google Scholar 

  7. Bellingham JM, Santhanakrishnan C, Neidlinger N, Wai P, Kim J, Niederhaus S, et al. Donation after cardiac death: a 29-year experience. Surgery NIH Public Access. 2011;150(4):692–702.

    Google Scholar 

  8. Vajdová K, Smreková R, Mislanová C, Kukan M, Lutterová M. Cold-preservation-induced sensitivity of rat hepatocyte function to rewarming injury and its prevention by short-term reperfusion. Hepatology. 2000;32(2):289–96.

    Article  PubMed  Google Scholar 

  9. Spetzler VN, Goldaracena N, Selzner N, Selzner M. Early clinical results using normothermic machine liver preservation. Curr Transplant Reports Springer International Publishing. 2015;2(1):74–80.

    Article  Google Scholar 

  10. Weigand K, Brost S, Steinebrunner N, Büchler M, Schemmer P, Müller M. Ischemia/reperfusion injury in liver surgery and transplantation: pathophysiology. HPB Surg. 2012;2012:176723.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Matsuno N, Kobayashi E. Challenges in machine perfusion preservation for liver grafts from donation after circulatory death. Transplant Res. 2013;2(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bruinsma BG, Avruch JH, Weeder PD, Sridharan G V, Uygun BE, Karimian NG, et al. Functional human liver preservation and recovery by means of subnormothermic machine perfusion. J Vis Exp. 2015;(98)

  13. Vogel T, Brockmann JG, Coussios C, Friend PJ. The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury. Transplant Rev (Orlando) Elsevier Inc. 2012;26(2):156–62.

    Article  Google Scholar 

  14. Yong C, Hosgood SA, Nicholson ML. Ex-vivo normothermic perfusion in renal transplantation: past, present and future. Curr Opin Organ Transplant. 2016;21(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ravikumar R, Leuvenink H, Friend PJ. Normothermic liver preservation: a new paradigm? Transpl Int. 2015;28(6):690–9.

    Article  CAS  PubMed  Google Scholar 

  16. Iyer A, Gao L, Doyle A, Rao P, Cropper JR, Soto C, et al. Normothermic ex vivo perfusion provides superior organ preservation and enables viability assessment of hearts from DCD donors. Am J Transplant. 2015;15(2):371–80.

    Article  CAS  PubMed  Google Scholar 

  17. Andreasson AS, Dark JH, Fisher AJ. Ex vivo lung perfusion in clinical lung transplantation--state of the art. Eur J Cardiothorac Surg. 2014;46(5):779–88.

    Article  PubMed  Google Scholar 

  18. Kaths JM, Echeverri J, Chun YM, Cen JY, Goldaracena N, Linares I, et al. Continuous normothermic ex vivo kidney perfusion improves graft function in donation after circulatory death pig kidney transplantation. Transplantation. 2016

  19. Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev. 2003;83(4):1153–81.

    Article  CAS  PubMed  Google Scholar 

  20. Balogun E, Foresti R, Green CJ, Motterlini R. Changes in temperature modulate heme oxygenase-1 induction by curcumin in renal epithelial cells. Biochem Biophys Res Commun. 2003;308(4):950–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kondo T, Chen F, Ohsumi A, Hijiya K, Motoyama H, Sowa T, et al. β2-Adrenoreceptor agonist inhalation during ex vivo lung perfusion attenuates lung injury. Ann Thorac Surg. 2015;100(2):480–6.

    Article  PubMed  Google Scholar 

  22. Goldaracena N, Echeverri J, Spetzler VN, Kaths JM, Barbas AS. Anti-inflammatory signaling during ex vivo liver perfusion improves the preservation of pig liver grafts before transplantation. Liver tran. 2016;22(11):1573–83.

    Article  Google Scholar 

  23. •• Banan B, Watson R, Xu M, Lin Y, Chapman W. Development of a normothermic ex-vivo liver perfusion (NELP) system towards improving viability and function of human extended criteria donor livers. Liver Transpl. 2016. This study suggests that reduction of steatosis levels is feasible with the use of NMP and "defatting" solutions

  24. Jamieson RW, Zilvetti M, Roy D, Hughes D, Morovat A, Coussios CC, et al. Hepatic steatosis and normothermic perfusion-preliminary experiments in a porcine model. Transplantation. 2011;92(3):289–95.

    Article  PubMed  Google Scholar 

  25. Nativ NI, Yarmush G, So A, Barminko J, Maguire TJ, Schloss R, et al. Elevated sensitivity of macrosteatotic hepatocytes to hypoxia/reoxygenation stress is reversed by a novel defatting protocol. Liver Transpl. 2014;20(8):1000–11.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brasile L, Buelow R, Stubenitsky BM, Kootstra G. Induction of heme oxygenase-1 in kidneys during ex vivo warm perfusion. Transplantation. 2003;76(8):1145–9.

    Article  CAS  PubMed  Google Scholar 

  27. Yang B, Hosgood SA, Bagul A, Waller HL, Nicholson ML. Erythropoietin regulates apoptosis, inflammation and tissue remodelling via caspase-3 and IL-1β in isolated hemoperfused kidneys. Eur J Pharmacol. 2011;660(2):420–30.

    Article  CAS  PubMed  Google Scholar 

  28. Geudens N, Wuyts WA, Rega FR, Vanaudenaerde BM, Neyrinck AP, Verleden GM, et al. N-acetyl cysteine attenuates the inflammatory response in warm ischemic pig lungs. J Surg Res. 2008;146(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  29. Laurence JM, Allen RDM, Mccaughan GW, Logan GJ, Alexander IE, Bishop GA, et al. Gene therapy in transplantation. Transplant Rev. 2009;23(3):159–70.

    Article  Google Scholar 

  30. Yeung JC, Wagnetz D, Cypel M, Rubacha M, Koike T, Chun Y-M, et al. Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre- and post-lung transplantation in the pig. Mol Ther Nature Publishing Group. 2012;20(6):1204–11.

    CAS  Google Scholar 

  31. Roemeling-van Rhijn M, Weimar W, Hoogduijn MJ. Mesenchymal stem cells: application for solid-organ transplantation. Curr Opin Organ Transplant. 2012;17(1):55–62.

    Article  PubMed  Google Scholar 

  32. Hoogduijn MJ, Popp FC, Grohnert A, Crop MJ, van Rhijn M, Rowshani AT, et al. Advancement of mesenchymal stem cell therapy in solid organ transplantation (MISOT). Transplantation. 2010;90(2):124–6.

    Article  PubMed  Google Scholar 

  33. Van Raemdonck D, Neyrinck A, Rega F, Devos T, Pirenne J. Machine perfusion in organ transplantation: a tool for ex-vivo graft conditioning with mesenchymal stem cells? Curr Opin Organ Transpl. 2013;18(1):24–33.

    Article  CAS  Google Scholar 

  34. Lange C, Tögel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR, et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int. 2005;68(4):1613–7.

    Article  PubMed  Google Scholar 

  35. Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012;307(11):1169–77.

    Article  CAS  PubMed  Google Scholar 

  36. Pan G, Yang Y, Zhang J, Liu W, Wang G, Zhang Y, et al. Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the MEK/ERK signaling pathway in rats. J Surg Res. 2012;178(2):935–48.

    Article  CAS  PubMed  Google Scholar 

  37. Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol. 2008;181(6):3933–46.

    Article  CAS  PubMed  Google Scholar 

  38. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A National Academy of Sciences. 2009;106(38):16357–62.

    Article  CAS  Google Scholar 

  39. Fechner G, Pezold C, Hauser S, Gerhardt T, Müller SC. Kidney’s nightshift, kidney’s nightmare? Comparison of daylight and nighttime kidney transplantation: impact on complications and graft survival. Transplant Proc. 2008;40(5):1341–4.

    Article  CAS  PubMed  Google Scholar 

  40. Aylin P, Alexandrescu R, Jen MH, Mayer EK, Bottle A. Day of week of procedure and 30 day mortality for elective surgery: retrospective analysis of hospital episode statistics. BMJ. 2013;346(May 2013):f2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. García-Valdecasas JC, Tabet J, Valero R, Taurá P, Rull R, García F, et al. Liver conditioning after cardiac arrest: the use of normothermic recirculation in an experimental animal model. Transpl Int. 1998;11(6):424–32.

    Article  PubMed  Google Scholar 

  42. Net M, Valero R, Almenara R, Barros P, Capdevila L, López-Boado MA, et al. The effect of normothermic recirculation is mediated by ischemic preconditioning in NHBD liver transplantation. Am J Transplant. 2005;5(10):2385–92.

    Article  CAS  PubMed  Google Scholar 

  43. Fondevila C, Hessheimer AJ, Ruiz A, Calatayud D, Ferrer J, Charco R, et al. Liver transplant using donors after unexpected cardiac death: novel preservation protocol and acceptance criteria. Am J Transplant. 2007;7(7):1849–55.

    Article  CAS  PubMed  Google Scholar 

  44. García-Valdecasas JC, Fondevila C. In-vivo normothermic recirculation: an update. Curr Opin Organ Transplant. 2010;15(2):173–6.

    Article  PubMed  Google Scholar 

  45. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 2010;16(8):2581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med Nature Research. 2010;16(8):927–33.

    Article  CAS  Google Scholar 

  48. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med Nature Publishing Group. 2008;14(2):213–21.

    Article  CAS  Google Scholar 

  50. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53.

    Article  CAS  PubMed  Google Scholar 

  51. Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A. 2010;16(8):2565–80.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou Q, Li L, Li J. Stem cells with decellularized liver scaffolds in liver regeneration and their potential clinical applications. Liver Int. 2015;35(3):687–94.

    Article  CAS  PubMed  Google Scholar 

  53. Martin I, Smith T, Wendt D, Pellegrini G, Tsai RJ, et al. Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol Elsevier. 2009;27(9):495–502.

    Article  CAS  Google Scholar 

  54. Panoskaltsis-Mortari A. Bioreactor development for lung tissue engineering. Curr Transplant reports NIH Public Access. 2015;2(1):90–7.

    Article  Google Scholar 

  55. Charest JM, Okamoto T, Kitano K, Yasuda A, Gilpin SE, Mathisen DJ, et al. Design and validation of a clinical-scale bioreactor for long-term isolated lung culture. Biomaterials. 2015;52:79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kulig KM, Vacanti JP. Hepatic tissue engineering. Transpl Immunol. 2004;12(3–4):303–10.

    Article  CAS  PubMed  Google Scholar 

  57. Kaths JM, Cen JY, Chun YM, Echeverri J, Linares I, Ganesh S, et al. Continuous normothermic ex vivo kidney perfusion is superior to brief normothermic perfusion following static cold storage in donation after circulatory death pig kidney transplantation. Am J Transplant. 2016

  58. Butler AJ, Rees MA, Wight DGD, Casey ND, Alexander G, White DJG, et al. Successful extracorporeal porcine liver perfusion for 72 hr. Transplantation. 2002;73(8):1212–8.

    Article  CAS  PubMed  Google Scholar 

  59. Khan AA, Vishwakarma SK, Bardia A, Venkateshwarulu J. Repopulation of decellularized whole organ scaffold using stem cells: an emerging technology for the development of neo-organ. J Artif Organs Springer Japan. 2014;17(4):291–300.

    Article  CAS  Google Scholar 

  60. Elaut G, Henkens T, Papeleu P, Snykers S, Vinken M, Vanhaecke T, et al. Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. Curr Drug Metab. 2006;7(6):629–60.

    Article  CAS  PubMed  Google Scholar 

  61. Messer S, Ardehali A, Tsui S. Normothermic donor heart perfusion: current clinical experience and the future. Transpl Int. 2015;28(6):634–42.

    Article  PubMed  Google Scholar 

  62. Kaths JM, Echeverri J, Goldaracena N, Louis KS, Chun Y-M, Linares I, et al. Eight-hour continuous normothermic ex vivo kidney perfusion is a safe preservation technique for kidney transplantation: a new opportunity for the storage, assessment, and repair of kidney grafts. Transplantation. 2016;100(9):1862–70.

    Article  CAS  PubMed  Google Scholar 

  63. Mahboub P, Ottens P, Seelen M, Hart NT, Van Goor H, Ploeg R, et al. Gradual rewarming with gradual increase in pressure during machine perfusion after cold static preservation reduces kidney ischemia reperfusion injury. PLoS One. 2015;10(12):1–12.

    Article  Google Scholar 

  64. Stone JP, Ball AL, Critchley WR, Major T, Edge RJ, Amin K, et al. Ex vivo normothermic perfusion induces donor-derived leukocyte mobilization and removal prior to renal transplantation. Kidney Int Reports. Elsevier Inc; 2016;1–10

  65. Hosgood SA, Patel M, Nicholson ML. The conditioning effect of ex vivo normothermic perfusion in an experimental kidney model. J Surg Res. Elsevier Ltd. 2013;182(1):153–60.

    Article  Google Scholar 

  66. Hosgood SA, Barlow AD, Yates PJ, Snoeijs MGJ, Van Heurn ELW, Nicholson ML. A pilot study assessing the feasibility of a short period of normothermic preservation in an experimental model of non heart beating donor kidneys. J Surg Res Elsevier Ltd. 2011;171(1):283–90.

    Article  Google Scholar 

  67. Hosgood SA, Barlow AD, Dormer J, Nicholson ML, Johnson R, Bradbury L, et al. The use of ex-vivo normothermic perfusion for the resuscitation and assessment of human kidneys discarded because of inadequate in situ perfusion. J Transl Med BioMed Central. 2015;13(1):329.

    Google Scholar 

  68. Watson CJE, Kosmoliaptsis V, Randle LV, Russell NK, Griffiths WJH, Davies S, et al. Preimplant normothermic liver perfusion of a suboptimal liver donated after circulatory death. Am J Transplant. 2016;16(1):353–7.

    Article  CAS  PubMed  Google Scholar 

  69. Selzner M, Goldaracena N, Echeverri J, Kaths JM, Linares I, Selzner N, et al. Normothermic ex vivo liver perfusion using steen solution as perfusate for human liver transplantation—First North American results. Liver Transpl. 2016;1–28

  70. •• Ravikumar R, Jassem W, Mergental H, Heaton N, Mirza D, Perera MTPR, et al. Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am J Transplant. 2016;16(6):1779–87. This study is the first publication on clinical outcomes of trasnplanting NMP-perfused livers. The preliminary results, have shown the safet and feasibility of NMP

    Article  CAS  PubMed  Google Scholar 

  71. Karangwa SA, Dutkowski P, Fontes P, Friend PJ, Guarrera JV, Markmann JF, et al. Machine perfusion of donor livers for transplantation: a proposal for standardized nomenclature and reporting guidelines. Am J Transplant. 2016;1967(1):2932–42.

    Article  Google Scholar 

  72. Goldaracena N, Barbas AS, Selzner M. Normothermic and subnormothermic ex-vivo liver perfusion in liver transplantation. Curr Opin Organ Transplant. 2016;21(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  73. Bral M, Gala-Lopez B, Bigam D, Kneteman N, Malcolm A, Livingstone S, et al. Preliminary single centre Canadian experience of human normothermic ex vivo liver perfusion: results of a clinical trial. Am J Transplant. 2016

  74. Barbas A, Knechtle S. Expanding the donor pool with normothermic ex-vivo liver perfusion: the future is now. Am J Transplant. 2016;(2)

  75. Barbas AS, Goldaracena N, Dib MJ, Selzner M. Ex-vivo liver perfusion for organ preservation: Recent advances in the field. Transplant Rev. Elsevier Inc.; 2016;30(3):154–160.

  76. Wallinder A, Riise GC, Ricksten S-E, Silverborn M, Dellgren G. Transplantation after ex vivo lung perfusion: a midterm follow-up. J Hear Lung Transplant. Elsevier; 2016;1–8

  77. Schiavon M, Marulli G, Rebusso A, Calabrese F, Di Gregorio G, Serra E, et al. Normothermic perfusion of donor marginal lungs with the organ care system lung: clinical and morphologic evaluation. J Cardiothorac Vasc Anesth Elsevier. 2016;30(4):1032–7.

    Article  Google Scholar 

  78. Briot R, Gennai S, Maignan M, Souilamas R, Pison C. Ex vivo lung graft perfusion. Anaesth Crit Care Pain Med. 2016;35(2):123–31.

    Article  PubMed  Google Scholar 

  79. Banan B, Chung H, Xiao Z, Tarabishy Y, Jia J, Manning P, et al. Normothermic extracorporeal liver perfusion for donation after cardiac death (DCD) livers. Surgery. 2015 18

  80. Banan B, Xiao Z, Watson R, Xu M, Jia J, Upadhya GA, et al. Novel strategy to decrease reperfusion injuries and improve function of cold preserved livers using normothermic ex-vivo liver perfusion machine. Liver Transpl. 2015

  81. Mergental H, Perera MTPR, Laing RW, Muiesan P, Isaac JR, Smith A, et al. Transplantation of declined liver allografts following normothermic ex-situ evaluation. Am J Transplant. 2016;16(11):3235–45.

    Article  CAS  PubMed  Google Scholar 

  82. Quillin RC, Guarrera JV. “in 10 years” of debate: pro-machine perfusion for liver preservation will be universal. Liver Transpl. 2016;22(S1):25–8.

    Article  PubMed  Google Scholar 

  83. Echeverri J, Selzner M. In 10 years debate: con: machine perfusion will be limited to specific situations (Steatotic, DCD). Liver Transpl. 2016;2–43

  84. •• Tikkanen JM, Cypel M, Machuca TN, Azad S, Binnie M, Chow C-W, et al. Functional outcomes and quality of life after normothermic ex vivo lung perfusion lung transplantation. J Hear Lung Transplant. Elsevier. 2014;34(4):1–10. This study demonstrates that NMP of standard and ECD lungs is safe, feasible and leads to acceptable long-term outcomes

    Google Scholar 

  85. Fildes JE, Archer LD, Blaikley J, Ball AL, Stone JP, Sjöberg T, et al. Clinical outcome of patients transplanted with marginal donor lungs via ex vivo lung perfusion compared to standard lung transplantation. Transplantation. 2015;99(5):1078–83.

    Article  CAS  PubMed  Google Scholar 

  86. Brasile L, DelVecchio P, Amyot K, Haisch C, Clarke J. Organ preservation without extreme hypothermia using an oxygen supplemented perfusate. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(4):1463–8.

    Article  CAS  PubMed  Google Scholar 

  87. Stubenitsky BM, Booster MH, Brasile L, Araneda D, Haisch CE, Kootstra G. Exsanguinous metabolic support perfusion—a new strategy to improve graft function after kidney transplantation. Transplantation. 2000;70(8):1254–8.

    Article  CAS  PubMed  Google Scholar 

  88. Stubenitsky BM, Booster MH, Brasile L, Araneda D, Haisch CE, Kootstra G. Pretransplantation prognostic testing on damaged kidneys during ex vivo warm perfusion. Transplantation. 2001;71(6):716–20.

    Article  CAS  PubMed  Google Scholar 

  89. Brasile L, Stubenitsky BM, Booster MH, Arenada D, Haisch C, Kootstra G. Hypothermia—a limiting factor in using warm ischemically damaged kidneys. Am J Transplant. 2001;1(4):316–20.

    Article  CAS  PubMed  Google Scholar 

  90. Brasile L, Stubenitsky BM, Booster MH, Lindell S, Araneda D, Buck C, et al. Overcoming severe renal ischemia: the role of ex vivo warm perfusion. Transplantation. 2002;73(6):897–901.

    Article  PubMed  Google Scholar 

  91. Brasile L, Stubenitsky BM, Booster MH, Haisch C, Kootstra G. NOS: the underlying mechanism preserving vascular integrity and during ex vivo warm kidney perfusion. Am J Transplant. 2003;3(6):674–9.

    Article  CAS  PubMed  Google Scholar 

  92. Brasile L, Stubenitsky BM, Haisch CE, Kon M, Kootstra G. Repair of damaged organs in vitro. Am J Transplant. 2005;5(2):300–6.

    Article  PubMed  Google Scholar 

  93. Brasile L, Stubenitsky B, Haisch CE, Kon M, Kootstra G. Potential of repairing ischemically damaged kidneys ex vivo. Transplant Proc. 2005;37(1):375–6.

    Article  CAS  PubMed  Google Scholar 

  94. Brasile L, Stubenitsky BM, Booster MH, Arenada D, Haisch C, Kootstra G, et al. Transfection and transgene expression in a human kidney during ex vivo warm perfusion. Transplant Proc Elsevier. 2002;34(7):2624.

    Article  CAS  Google Scholar 

  95. Brasile L, Glowacki P, Castracane J, Stubenitsky BM. Pretransplant kidney-specific treatment to eliminate the need for systemic immunosuppression. Transplantation. 2010;90(12):1294–8.

    Article  CAS  PubMed  Google Scholar 

  96. Bagul A, Hosgood SA, Kaushik M, Kay MD, Waller HL, Nicholson ML. Experimental renal preservation by normothermic resuscitation perfusion with autologous blood. Br J Surg. 2008;95(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  97. Hosgood SA, Nicholson ML. First in man renal transplantation after ex vivo normothermic perfusion. Transplantation. 2011;92(7):735–8.

    Article  PubMed  Google Scholar 

  98. Nicholson M, Hosgood S. Preoperative assessment of renal transplant ureteric blood supply using ex vivo normothermic perfusion. Transplantation. 2015;99(10):e166.

    Article  PubMed  Google Scholar 

  99. Hosgood SA, Barlow AD, Hunter JP, Nicholson ML. Ex vivo normothermic perfusion for quality assessment of marginal donor kidney transplants. Br J Surg. 2015;102(11):1433–40.

    Article  CAS  PubMed  Google Scholar 

  100. Hosgood SA. Renal transplantation after ex vivo normothermic perfusion: the first clinical study. Am J Transplant. 2013;13(5):1246–52.

    Article  PubMed  Google Scholar 

  101. Ardehali A, Esmailian F, Deng M, Soltesz E, Hsich E, Naka Y, et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet (London, England). Elsevier. 2015;385(9987):2577–84.

    Google Scholar 

  102. Kuan KG, Wee MN, Chung WY, Kumar R, Mees ST, Dennison A, et al. Extracorporeal machine perfusion of the pancreas: technical aspects and its clinical implications—a systematic review of experimental models. Transplant Rev Elsevier Inc. 2016;30:31–47.

    Article  Google Scholar 

  103. Barlow AD, Hamed MO, Mallon DH, Brais RJ, Gribble FM, Scott MA, et al. Use of ex vivo normothermic perfusion for quality assessment of discarded human donor pancreases. Am J Transplant. 2015;15(9):2475–82.

    Article  CAS  PubMed  Google Scholar 

  104. Karcz M, Cook HT, Sibbons P, Gray C, Dorling A, Papalois V. An ex-vivo model for hypothermic pulsatile perfusion of porcine pancreata: hemodynamic and morphologic characteristics. Exp Clin Transplant. 2010;8(1):55–60.

    PubMed  Google Scholar 

  105. Hosgood SA, Nicholson ML. The role of perfluorocarbon in organ preservation. Transplantation. 2010;89(10):1169–75.

    Article  CAS  PubMed  Google Scholar 

  106. Fontes PA, Marsh JW, Lopez RC, Soltys K, Cruz RJ, van der Plaats A et al. Machine perfusion with a new oxygen-carrier solution: the future of liver preservation [abstract]. Hepatology. 2012;(56):1524A

  107. Petrowsky H. Pump the organ. Curr Opin Organ Transplant. 2016;21(3):285–7.

    Article  PubMed  Google Scholar 

  108. Kestens PJ, Mikaeloff P, Haxhe JJ, Dureau G, Alexandre G, Rassat JP, et al. Homotransplantation of the canine liver after hypothermic perfusion of long duration. Bull la Société Int Chir. 25(6):647–59.

  109. Slapak M, Wigmore RA, MacLean LD. Twenty-four hour liver preservation by the use of continuous pulsatile perfusion and hyperbaric oxygen. Transplantation. 1967;5(4):Suppl:1154–8.

    Article  CAS  Google Scholar 

  110. Brettschneider L, Daloze PM, Huguet C, Porter KA, Groth CG, Kashiwagi N, et al. The use of combined preservation techniques for extended storage of orthotopic liver homografts. Surg Gynecol Obstet. 1968;126(2):263–74.

    PubMed  PubMed Central  Google Scholar 

  111. Starzl TE, Marchioro TL, Huntley RT, Rifkind D, Rowlands DT, Dickinson TC, et al. Experimental and clinical homotransplantation of the liver*. Ann N Y Acad Sci Blackwell Publishing Ltd. 2006;120(1):739–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Chapman.

Ethics declarations

Conflict of Interest

Babak Banan declares no conflict of interest. William Chapman reports personal fees from Pathfinder Therapeutics, personal fees from Novartis Pharmaceuticals outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on OPTN Policy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banan, B., Chapman, W. Promise of Normothermia. Curr Transpl Rep 4, 42–51 (2017). https://doi.org/10.1007/s40472-017-0137-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-017-0137-x

Keywords

Navigation