Skip to main content
Log in

Adoptive Cell Therapy with Tregs to Improve Transplant Outcomes: the Promise and the Stumbling Blocks

  • Immunology (R Fairchild, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

The contribution of regulatory T cells (Treg) to the induction and maintenance of tolerance is well-recognized in rodents and may contribute to long-term human organ allograft survival. The therapeutic efficacy of adoptively transferred Treg in promoting tolerance to organ allografts is well-recognized in mouse models. Early phase 1/2 clinical studies of Treg therapy have been conducted in patients with type-1 (autoimmune) diabetes and refractory Crohn’s disease and for inhibition of graft-versus-host disease following bone marrow transplantation with proven safety. The feasibility of adoptive Treg therapy in the clinic is subject to various parameters, including optimal cell source, isolation procedure, expansion, target dose, time of infusion, as well as generation of a GMP-cell product. Several phase 1/2 Treg dose-escalation studies are underway in organ transplantation. Recent evidence suggests that additional factors are critical to ensure Treg safety and efficacy in allograft recipients, including Treg characterization, stability, longevity, trafficking, concomitant immunosuppression, and donor antigen specificity. Accordingly, Treg therapy in the context of organ transplantation may prove more challenging in comparison to other prospective clinical settings of Treg immunotherapy, such as type-1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of Particular Interest, Published recently, Have Been Highlighted as: • Of importance •• Of major importance

  1. Vincenti F, Charpentier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2010;10(3):535–46.

    Article  CAS  Google Scholar 

  2. Hricik DE, Formica RN, Nickerson P, Rush D, Fairchild RL, Poggio ED, et al. Adverse outcomes of tacrolimus withdrawal in immune-quiescent kidney transplant recipients. Journal of the American Society of Nephrology: JASN. 2015;26(12):3114–22.

    Article  CAS  PubMed  Google Scholar 

  3. Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B, Gurkan A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007;357(25):2562–75.

    Article  CAS  PubMed  Google Scholar 

  4. Kawai T, Cosimi AB, Spitzer TR, Tolkoff-Rubin N, Suthanthiran M, Saidman SL, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008;358(4):353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leventhal J, Abecassis M, Miller J, Gallon L, Ravindra K, Tollerud DJ, et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci Transl Med. 2012;4(124):124ra28.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bluestone JA, Thomson AW, Shevach EM, Weiner HL. What does the future hold for cell-based tolerogenic therapy? Nat Rev Immunol. 2007;7(8):650–4.

    Article  CAS  PubMed  Google Scholar 

  7. Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. Nat Rev Immunol. 2012;12(6):417–30.

    Article  CAS  PubMed  Google Scholar 

  8. Hutchinson JA, Riquelme P, Sawitzki B, Tomiuk S, Miqueu P, Zuhayra M, et al. Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J Immunol. 2011;187(5):2072–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hutchinson JA, Geissler EK. Now or never? The case for cell-based immunosuppression in kidney transplantation. Kidney Int. 2015;87(6):1116–24.

    Article  PubMed  Google Scholar 

  10. Thomson AW, Zahorchak AF, Ezzelarab MB, Butterfield LH, Lakkis FG, Metes DM. Prospective clinical testing of regulatory dendritic cells in organ transplantation. Front Immunol. 2016;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lechner MG, Liebertz DJ, Epstein AL. Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol. 2010;185(4):2273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. •McDonald-Hyman C, Turka LA, Blazar BR. Advances and challenges in immunotherapy for solid organ and hematopoietic stem cell transplantation. Sci Transl Med. 2015;7(280):280rv2 .The authors provide a schematic review of the mechanisms underlying clinical stem cell and organ allo-transplantation and possible immunomodulatory therapies

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trzonkowski P, Bacchetta R, Battaglia M, Berglund D, Bohnenkamp HR, Ten Brinke A, et al. Hurdles in therapy with regulatory T cells. Sci Transl Med. 2015;7(304):304ps18.

    Article  PubMed  Google Scholar 

  14. Bestard O, Cruzado JM, Rama I, Torras J, Goma M, Seron D, et al. Presence of FoxP3+ regulatory T cells predicts outcome of subclinical rejection of renal allografts. Journal of the American Society of Nephrology : JASN. 2008;19(10):2020–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bestard O, Cunetti L, Cruzado JM, Lucia M, Valdez R, Olek S, et al. Intragraft regulatory T cells in protocol biopsies retain foxp3 demethylation and are protective biomarkers for kidney graft outcome. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2011;11(10):2162–72.

    Article  CAS  Google Scholar 

  16. Bestard O, Cruzado JM, Mestre M, Caldes A, Bas J, Carrera M, et al. Achieving donor-specific hyporesponsiveness is associated with FOXP3+ regulatory T cell recruitment in human renal allograft infiltrates. J Immunol. 2007;179(7):4901–9.

    Article  CAS  PubMed  Google Scholar 

  17. Ashton-Chess J, Dugast E, Colvin RB, Giral M, Foucher Y, Moreau A, et al. Regulatory, effector, and cytotoxic T cell profiles in long-term kidney transplant patients. Journal of the American Society of Nephrology : JASN. 2009;20(5):1113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Veronese F, Rotman S, Smith RN, Pelle TD, Farrell ML, Kawai T, et al. Pathological and clinical correlates of FOXP3+ cells in renal allografts during acute rejection. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2007;7(4):914–22.

    Article  CAS  Google Scholar 

  19. Andreola G, Chittenden M, Shaffer J, Cosimi AB, Kawai T, Cotter P, et al. Mechanisms of donor-specific tolerance in recipients of haploidentical combined bone marrow/kidney transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2011;11(6):1236–47.

    Article  CAS  Google Scholar 

  20. MacDonald KG, Orban PC, Levings MK. T regulatory cell therapy in transplantation: stability, localization and functional specialization. Current opinion in organ transplantation. 2012;17(4):343–8.

    Article  CAS  PubMed  Google Scholar 

  21. Burrell BE, Nakayama Y, Xu J, Brinkman CC, Bromberg JS, Regulatory T. Cell induction, migration, and function in transplantation. J Immunol. 2012;189(10):4705–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. •Braza F, Durand M, Degauque N, Brouard S, Regulatory T. Cells in kidney transplantation: new directions? Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2015;15(9):2288–300 The authors review recent findings regarding regulatory T cell characterization, and the role of epigenetic programming in Treg stability and function.

    Article  CAS  Google Scholar 

  23. •Sawant DV, Vignali DA. Once a Treg, always a Treg? Immunol Rev. 2014;259(1):173–91 A critical review of current understating of key intrinsic and extrinsic mechanisms influencing Treg plasticity and stability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •Tang Q. Pharmacokinetics of therapeutic Tregs. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2014;14(12):2679–80 This commentary highlights the importance of NHP studies in the evaluation of pharmacokinetics of adoptive Treg therapy.

    Article  CAS  Google Scholar 

  25. •Koehn BH, Apostolova P, Haverkamp JM, Miller JS, McCullar V, Tolar J, et al. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood. 2015;126(13):1621–8 This study provides evidence of the loss of immunsuppressive function of cell therapy under intense inflammatory conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899–911.

    Article  CAS  PubMed  Google Scholar 

  27. Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest. 2005;115(7):1953–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK. Helios + and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J Immunol. 2013;190(5):2001–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sagoo P, Ali N, Garg G, Nestle FO, Lechler RI, Lombardi G. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci Transl Med. 2011;3(83):83ra42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan Z, Spencer JA, Lu Y, Pitsillides CM, Singh G, Kim P, et al. In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response. Nat Med. 2010;16(6):718–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang Q, Lee K. Regulatory T-cell therapy for transplantation: how many cells do we need? Current opinion in organ transplantation. 2012;17(4):349–54.

    Article  CAS  PubMed  Google Scholar 

  32. Lee YK, Mukasa R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol. 2009;21(3):274–80.

    Article  CAS  PubMed  Google Scholar 

  33. •Bailey-Bucktrout SL, Martinez-Llordella M, Zhou X, Anthony B, Rosenthal W, Luche H, et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity. 2013;39(5):949–62 This study shows that a subset of self-antigen-specific Treg can loose Foxp3 expression during inflammation and can further contribute to the autoimmune response through production of IFNγ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 2009;10(9):1000–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Degauque N, Mariat C, Kenny J, Zhang D, Gao W, Vu MD, et al. Immunostimulatory Tim-1-specific antibody deprograms Tregs and prevents transplant tolerance in mice. J Clin Invest. 2008;118(2):735–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yurchenko E, Shio MT, Huang TC, Da Silva Martins M, Szyf M, Levings MK, et al. Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo. PLoS One. 2012;7(4):e35572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. •Ueno A, Jijon H, Chan R, Ford K, Hirota C, Kaplan GG, et al. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflamm Bowel Dis. 2013;19(12):2522–34 The authors report on the incidence of double-expressing IL-17 + Foxp3 + CD4 + T cells and plasticity between Th17 and Treg cells in patients with inflammatory bowel disease.

    Article  PubMed  Google Scholar 

  38. d’Hennezel E, Piccirillo CA. Functional plasticity in human FOXP3(+) regulatory T cells: implications for cell-based immunotherapy. Human vaccines & immunotherapeutics. 2012;8(7):1001–5.

    Article  CAS  Google Scholar 

  39. Yeh H, Moore DJ, Markmann JF, Kim JI. Mechanisms of regulatory T cell counter-regulation by innate immunity. Transplant Rev. 2013;27(2):61–4.

    Article  Google Scholar 

  40. Juvet SC, Whatcott AG, Bushell AR, Wood KJ. Harnessing regulatory T cells for clinical use in transplantation: the end of the beginning. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2014;14(4):750–63.

    Article  CAS  Google Scholar 

  41. ••Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20(1):62–8 The authors report on the acceleration of autoimmune disease in rodents with secondary immunization following adoptive transfer of autoreactive, antigen-experienced CD25 lo Foxp3 + CD4 + T cells, and the prevalence of IL-17 + Foxp3 + T cells in the joints of patients with rheumatoid arthritis.

    Article  CAS  PubMed  Google Scholar 

  42. Vu MD, Xiao X, Gao W, Degauque N, Chen M, Kroemer A, et al. OX40 costimulation turns off Foxp3+ Tregs. Blood. 2007;110(7):2501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, Waldmann H, et al. Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity. 2012;36(2):262–75.

    Article  CAS  PubMed  Google Scholar 

  44. Huehn J, Polansky JK, Hamann A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol. 2009;9(2):83–9.

    Article  CAS  PubMed  Google Scholar 

  45. De Serres SA, Sayegh MH, Najafian N. Immunosuppressive drugs and Tregs: a critical evaluation. Clinical journal of the American Society of Nephrology : CJASN. 2009;4(10):1661–9.

    Article  CAS  PubMed  Google Scholar 

  46. Akimova T, Kamath BM, Goebel JW, Meyers KE, Rand EB, Hawkins A, et al. Differing effects of rapamycin or calcineurin inhibitor on T-regulatory cells in pediatric liver and kidney transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12(12):3449–61.

    Article  CAS  Google Scholar 

  47. Sener A, Tang AL, Farber DL, Memory T. Cell predominance following T-cell depletional therapy derives from homeostatic expansion of naive T cells. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2009;9(11):2615–23.

    Article  CAS  Google Scholar 

  48. van der Windt DJ, Smetanka C, Macedo C, He J, Lakomy R, Bottino R, et al. Investigation of lymphocyte depletion and repopulation using alemtuzumab (Campath-1H) in cynomolgus monkeys. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2010;10(4):773–83.

    Article  CAS  Google Scholar 

  49. King C, Ilic A, Koelsch K, Sarvetnick N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell. 2004;117(2):265–77.

    Article  CAS  PubMed  Google Scholar 

  50. Khoruts A, Fraser JMA. Causal link between lymphopenia and autoimmunity. Immunol Lett. 2005;98(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  51. Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI. In vitro-expanded donor alloantigen-specific CD4 + CD25+ regulatory T cells promote experimental transplantation tolerance. Blood. 2007;109(2):827–35.

    Article  CAS  PubMed  Google Scholar 

  52. Xia G, He J, Leventhal JR. Ex vivo-expanded natural CD4 + CD25+ regulatory T cells synergize with host T-cell depletion to promote long-term survival of allografts. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2008;8(2):298–306.

    Article  CAS  Google Scholar 

  53. Joffre O, Santolaria T, Calise D, Al Saati T, Hudrisier D, Romagnoli P, et al. Prevention of acute and chronic allograft rejection with CD4 + CD25 + Foxp3+ regulatory T lymphocytes. Nat Med. 2008;14(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  54. Xia CQ, Chernatynskaya AV, Wasserfall CH, Wan S, Looney BM, Eisenbeis S, et al. Anti-thymocyte globulin (ATG) differentially depletes naive and memory T cells and permits memory-type regulatory T cells in nonobese diabetic mice. BMC Immunol. 2012;13:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lopez M, Clarkson MR, Albin M, Sayegh MH, Najafian NA. Novel mechanism of action for anti-thymocyte globulin: induction of CD4 + CD25 + Foxp3+ regulatory T cells. Journal of the American Society of Nephrology : JASN. 2006;17(10):2844–53.

    Article  CAS  PubMed  Google Scholar 

  56. Feng X, Kajigaya S, Solomou EE, Keyvanfar K, Xu X, Raghavachari N, et al. Rabbit ATG but not horse ATG promotes expansion of functional CD4 + CD25highFOXP3+ regulatory T cells in vitro. Blood. 2008;111(7):3675–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boenisch O, Lopez M, Elyaman W, Magee CN, Ahmad U, Najafian N. Ex vivo expansion of human Tregs by rabbit ATG is dependent on intact STAT3-signaling in CD4(+) T cells and requires the presence of monocytes. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12(4):856–66.

    Article  CAS  Google Scholar 

  58. Ciancio G, Burke GW, Gaynor JJ, Carreno MR, Cirocco RE, Mathew JM, et al. A randomized trial of three renal transplant induction antibodies: early comparison of tacrolimus, mycophenolate mofetil, and steroid dosing, and newer immune-monitoring. Transplantation. 2005;80(4):457–65.

    Article  CAS  PubMed  Google Scholar 

  59. Riella LV, Liu T, Yang J, Chock S, Shimizu T, Mfarrej B, et al. Deleterious effect of CTLA4-Ig on a treg-dependent transplant model. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12(4):846–55.

    Article  CAS  Google Scholar 

  60. Charbonnier LM, Vokaer B, Lemaitre PH, Field KA, Leo O, Le Moine A. CTLA4-Ig restores rejection of MHC class-II mismatched allografts by disabling IL-2-expanded regulatory T cells. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12(9):2313–21.

    Article  CAS  Google Scholar 

  61. •Schwarz C, Unger L, Mahr B, Aumayr K, Regele H, Farkas AM et al. The immunosupressive effect of CTLA4Ig is treg-dependent at low, but not at high doses. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2016;In press. This study suggests that low-dose of costimulation blockade by CTLA4Ig may not be detrimental to Treg after transplantation.

  62. Bestard O, Cassis L, Cruzado JM, Torras J, Franquesa M, Gil-Vernet S, et al. Costimulatory blockade with mTor inhibition abrogates effector T-cell responses allowing regulatory T-cell survival in renal transplantation. Transpl Int. 2011;24(5):451–60.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang N, Schroppel B, Lal G, Jakubzick C, Mao X, Chen D, et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity. 2009;30(3):458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ochando JC, Yopp AC, Yang Y, Garin A, Li Y, Boros P, et al. Lymph node occupancy is required for the peripheral development of alloantigen-specific Foxp3+ regulatory T cells. J Immunol. 2005;174(11):6993–7005.

    Article  CAS  PubMed  Google Scholar 

  65. Sanchez-Fueyo A, Sandner S, Habicht A, Mariat C, Kenny J, Degauque N, et al. Specificity of CD4 + CD25+ regulatory T cell function in alloimmunity. J Immunol. 2006;176(1):329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsang JY, Tanriver Y, Jiang S, Xue SA, Ratnasothy K, Chen D, et al. Conferring indirect allospecificity on CD4 + CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice. J Clin Invest. 2008;118(11):3619–28.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Raimondi G, Sumpter TL, Matta BM, Pillai M, Corbitt N, Vodovotz Y, et al. Mammalian target of rapamycin inhibition and alloantigen-specific regulatory T cells synergize to promote long-term graft survival in immunocompetent recipients. J Immunol. 2010;184(2):624–36.

    Article  CAS  PubMed  Google Scholar 

  68. Trenado A, Charlotte F, Fisson S, Yagello M, Klatzmann D, Salomon BL, et al. Recipient-type specific CD4 + CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest. 2003;112(11):1688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nadig SN, Wieckiewicz J, Wu DC, Warnecke G, Zhang W, Luo S, et al. In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells. Nat Med. 2010;16(7):809–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Putnam AL, Safinia N, Medvec A, Laszkowska M, Wray M, Mintz MA, et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2013;13(11):3010–20.

    Article  CAS  Google Scholar 

  71. ••MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126(4):1413–24 The authors use chimeric antigen receptor (CAR) technology to generate and enrich for human allo-antigen specific Treg.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139.

    Article  PubMed  Google Scholar 

  74. Afzali B, Mitchell PJ, Scotta C, Canavan J, Edozie FC, Fazekasova H, et al. Relative resistance of human CD4(+) memory T cells to suppression by CD4(+) CD25(+) regulatory T cells. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2011;11(8):1734–42.

    Article  CAS  Google Scholar 

  75. Nadazdin O, Boskovic S, Murakami T, Tocco G, Smith RN, Colvin RB, et al. Host alloreactive memory T cells influence tolerance to kidney allografts in nonhuman primates. Sci Transl Med. 2011;3(86):86ra51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nadazdin O, Boskovic S, Murakami T, O’Connor DH, Wiseman RW, Karl JA, et al. Phenotype, distribution and alloreactive properties of memory T cells from cynomolgus monkeys. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2010;10(6):1375–84.

    Article  CAS  Google Scholar 

  77. Pearl JP, Parris J, Hale DA, Hoffmann SC, Bernstein WB, McCoy KL, et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2005;5(3):465–74.

    Article  CAS  Google Scholar 

  78. Koyama I, Nadazdin O, Boskovic S, Ochiai T, Smith RN, Sykes M, et al. Depletion of CD8 memory T cells for induction of tolerance of a previously transplanted kidney allograft. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2007;7(5):1055–61.

    Article  CAS  Google Scholar 

  79. Marco MR, Dons EM, van der Windt DJ, Bhama JK, Lu LT, Zahorchak AF, et al. Post-transplant repopulation of naive and memory T cells in blood and lymphoid tissue after alemtuzumab-mediated depletion in heart-transplanted cynomolgus monkeys. Transpl Immunol. 2013;29(1–4):88–98.

    Article  CAS  PubMed  Google Scholar 

  80. Kean LS, Gangappa S, Pearson TC, Larsen CP. Transplant tolerance in non-human primates: progress, current challenges and unmet needs. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2006;6(5 Pt 1):884–93.

    Article  CAS  Google Scholar 

  81. Ma A, Qi S, Song L, Hu Y, Dun H, Massicotte E, et al. Adoptive transfer of CD4 + CD25+ regulatory cells combined with low-dose sirolimus and anti-thymocyte globulin delays acute rejection of renal allografts in cynomolgus monkeys. Int Immunopharmacol. 2011;11(5):618–29.

    Article  CAS  PubMed  Google Scholar 

  82. Anderson A, Martens CL, Hendrix R, Stempora LL, Miller WP, Hamby K, et al. Expanded nonhuman primate Tregs exhibit a unique gene expression signature and potently downregulate alloimmune responses. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2008;8(11):2252–64.

    Article  CAS  Google Scholar 

  83. Dons EM, Raimondi G, Zhang H, Zahorchak AF, Bhama JK, Lu L, et al. Ex vivo-expanded cynomolgus macaque regulatory T cells are resistant to alemtuzumab-mediated cytotoxicity. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2013;13(8):2169–78.

    Article  CAS  Google Scholar 

  84. Dons EM, Raimondi G, Cooper DK, Thomson AW. Non-human primate regulatory T cells: current biology and implications for transplantation. Transplantation. 2010;90(8):811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Torrealba JR, Katayama M, Fechner Jr JH, Jankowska-Gan E, Kusaka S, Xu Q, et al. Metastable tolerance to rhesus monkey renal transplants is correlated with allograft TGF-beta 1 + CD4+ T regulatory cell infiltrates. J Immunol. 2004;172(9):5753–64.

    Article  CAS  PubMed  Google Scholar 

  86. Bashuda H, Kimikawa M, Seino K, Kato Y, Ono F, Shimizu A, et al. Renal allograft rejection is prevented by adoptive transfer of anergic T cells in nonhuman primates. J Clin Investig. 2005;115(7):1896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Singh K, Kozyr N, Stempora L, Kirk AD, Larsen CP, Blazar BR, et al. Regulatory T cells exhibit decreased proliferation but enhanced suppression after pulsing with sirolimus. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12(6):1441–57.

    Article  CAS  Google Scholar 

  88. •Singh K, Stempora L, Harvey RD, Kirk AD, Larsen CP, Blazar BR, et al. Superiority of rapamycin over tacrolimus in preserving nonhuman primate Treg half-life and phenotype after adoptive transfer. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2014;14(12):2691–703 The authors report on the pharmacokinetics of Treg following their adoptive transfer into rhesus monkeys receiving either rapamycin or tacrolimus.

    Article  CAS  Google Scholar 

  89. •Zhang H, Guo H, Lu L, Zahorchak AF, Wiseman RW, Raimondi G, et al. Sequential monitoring and stability of ex vivo-expanded autologous and nonautologous regulatory T cells following infusion in nonhuman primates. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2015;15(5):1253–66 The authors report on the pharmacokinetics of autologous or allogeneic Treg following their adoptive transfer into lymphodepleted cynomolgus monkeys.

    Article  CAS  Google Scholar 

  90. Guo H, Zhang H, Lu L, Ezzelarab MB, Thomson AW. Generation, cryopreservation, function and in vivo persistence of ex vivo expanded cynomolgus monkey regulatory T cells. Cell Immunol. 2015;295(1):19–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. ••Ezzelarab MB, Zhang H, Guo H, Lu L, Zahorchak AF, Wiseman RW, et al. Regulatory T cell infusion can enhance memory T cell and alloantibody responses in lymphodepleted nonhuman primate heart allograft recipients. Am J Transplant 2016;16:1999–2015. This study reports adverse effects on allograft survival of polyclonal Treg infusion early after transplantation in lymphodepleted monkeys.

  92. Gurkan S, Luan Y, Dhillon N, Allam SR, Montague T, Bromberg JS, et al. Immune reconstitution following rabbit antithymocyte globulin. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2010;10(9):2132–41.

    Article  CAS  Google Scholar 

  93. •Valdez-Ortiz R, Bestard O, Llaudo I, Franquesa M, Cerezo G, Torras J, et al. Induction of suppressive allogeneic regulatory T cells via rabbit antithymocyte polyclonal globulin during homeostatic proliferation in rat kidney transplantation. Transpl Int. 2015;28(1):108–19 This study suggests that lymphodepletion with ATG may promote suppressive Treg after transplantation.

    Article  CAS  PubMed  Google Scholar 

  94. Issa F, Hester J, Goto R, Nadig SN, Goodacre TE, Wood K. Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation. 2010;90(12):1321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Trzonkowski P, Bieniaszewska M, Juscinska J, Dobyszuk A, Krzystyniak A, Marek N, et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4 + CD25 + CD127- T regulatory cells. Clin Immunol. 2009;133(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  96. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8.

    Article  CAS  PubMed  Google Scholar 

  97. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. •Bacchetta R, Lucarelli B, Sartirana C, Gregori S, Lupo Stanghellini MT, Miqueu P, et al. Immunological outcome in haploidentical-HSC transplanted patients treated with IL-10-anergized donor T cells. Front Immunol. 2014;5:16 .In this clinical trial, IL-10-anergized donor T cells containing Tr1 Treg specific for host allo-antigens limited graft-versus-host allo-reactivity and improved engraftment

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. ••Todo S, Yamashita K, Goto R, Zaitsu M, Nagatsu A, Oura T, et al. A pilot study of operational tolerance with a regulatory T cell-based cell therapy in living donor liver transplantation. Hepatology. 2016; This study reports on the safety and preliminary efficacy of Treg-enriched host anergic T cells infused after transplantation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed B. Ezzelarab.

Ethics declarations

Conflict of Interest

Angus Thomson and Mohamed Ezzelarab report a grant from the NOH (AI U01 911297) part of the NIH NHP Transplantation Tolerance Cooperative Study Group and sponsored by the NIAID and NIDDK, during the conduct of this study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzelarab, M.B., Thomson, A.W. Adoptive Cell Therapy with Tregs to Improve Transplant Outcomes: the Promise and the Stumbling Blocks. Curr Transpl Rep 3, 265–274 (2016). https://doi.org/10.1007/s40472-016-0114-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-016-0114-9

Keywords

Navigation