Skip to main content

Advertisement

Log in

Post-transplant Lymphoproliferative Disorder (PTLD): Infection, Cancer?

  • Kidney Transplantation (M Henry, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Post-transplant lymphoproliferative disorder encompasses a broad spectrum of lymphoid disorders that occur in immune-suppressed patients following solid or hematopoietic stem cell transplantation. The Epstein-Barr virus (EBV) is an oncogenic virus capable of transforming B lymphocytes and is associated with the pathogenesis of multiple benign and malignant lymphoproliferative disorders, including PTLD. This review outlines current knowledge of EBV pathogenesis, its role in B cell immortalization, transformation, and as an etiologic agent in lymphoproliferative disorders in immune-suppressed patients following transplantation. Here, we provide discussion incorporating infectious disease and medical oncology aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Penn I, Hammond W, Brettschneider L, et al. Malignant lymphomas in transplantation patients. Transplant Proc. 1969;1(1):106–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor AL, Marcus R, Bradley JA. Post-transplant lymphoproliferative disorders (PTLD) after solid organ transplantation. Crit Rev Oncol Hematol. 2005;56(1):155–67.

    Article  PubMed  Google Scholar 

  3. Cockfield SM. Identifying the patient at risk for post-transplant lymphoproliferative disorder. Transpl Infect Dis. 2001;3(2):70–8.

    Article  CAS  PubMed  Google Scholar 

  4. Gao SZ, Chaparro SV, Perlroth M, et al. Post-transplantation lymphoproliferative disease in heart and heart-lung transplant recipients: 30-year experience at Stanford University. J Heart Lung Transplant.

  5. Han CW, Imamura M, Hashino S, et al. Differential effects of the immunosuppressants cyclosporin A, FK506 and KM2210 on cytokine gene expression. Bone Marrow Transplant. 1995;15(5):733–9.

    CAS  PubMed  Google Scholar 

  6. Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999;397(6719):530–4.

    Article  CAS  PubMed  Google Scholar 

  7. Cox KL, Lawrence-Miyasaki LS, Garcia-Kennedy R, et al. An increased incidence of Epstein-Barr virus infection and lymphoproliferative disorder in young children on FK506 after liver transplantation. Transplantation. 1995;59(4):524–9.

    Article  CAS  PubMed  Google Scholar 

  8. Crane GM, Powell H, Kostadinov R, et al. Primary CNS lymphoproliferative disease, mycophenolate and calcineurin inhibitor usage. Oncotarget. 2015;6(32):33849–66.

    PubMed  PubMed Central  Google Scholar 

  9. Swinnen LJ, Costanzo-Nordin MR, Fisher SG, et al. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl J Med. 1990;323(25):1723–8.

    Article  CAS  PubMed  Google Scholar 

  10. Opelz G, Döhler B. Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant. 2004;4(2):222–30.

    Article  PubMed  Google Scholar 

  11. Kanakry JA, Kasamon YL, Bolaños-Meade J, et al. Absence of post-transplantation lymphoproliferative disorder after allogeneic blood or marrow transplantation using post-transplantation cyclophosphamide as graft-versus-host disease prophylaxis. Biol Blood Marrow Transplant. 2013;19(10):1514–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Worth A, Conyers R, Cohen J, et al. Pre-emptive rituximab based on viraemia and T cell reconstitution: a highly effective strategy for the prevention of Epstein-Barr virus-associated lymphoproliferative disease following stem cell transplantation. Br J Haematol. 2011;155(3):377–85.

    Article  CAS  PubMed  Google Scholar 

  13. Jackson K, Ruppert K, Shapiro R. Post-transplant lymphoproliferative disorder after pancreas transplantation: a United Network for Organ Sharing database analysis. Clin Transplant. 2013;27(6):888–94.

    Article  CAS  PubMed  Google Scholar 

  14. Caillard S, Lamy FX, Quelen C, et al. Epidemiology of posttransplant lymphoproliferative disorders in adult kidney and kidney pancreas recipients: report of the French registry and analysis of subgroups of lymphomas. Am J Transplant. 2012;12(3):682–93.

    Article  CAS  PubMed  Google Scholar 

  15. van Leeuwen MT, Grulich AE, Webster AC, et al. Immunosuppression and other risk factors for early and late non-Hodgkin lymphoma after kidney transplantation. Blood. 2009;114(3):630–7.

    Article  PubMed  CAS  Google Scholar 

  16. Knight JS, Tsodikov A, Cibrik DM, et al. Lymphoma after solid organ transplantation: risk, response to therapy, and survival at a transplantation center. J Clin Oncol. 2009;27(20):3354–62.

    Article  PubMed  Google Scholar 

  17. Newell KA, Alonso EM, Whitington PF, et al. Posttransplant lymphoproliferative disease in pediatric liver transplantation. Interplay between primary Epstein-Barr virus infection and immunosuppression. Transplantation. 1996;62(3):370–5.

    Article  CAS  PubMed  Google Scholar 

  18. Sampaio MS, Cho YW, Shah T, et al. Impact of Epstein-Barr virus donor and recipient serostatus on the incidence of post-transplant lymphoproliferative disorder in kidney transplant recipients. Nephrol Dial Transplant. 2012;27(7):2971–9. doi:10.1093/ndt/gfr769.

    Article  PubMed  Google Scholar 

  19. McDonald RA, Smith JM, Ho M, et al. Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant. 2008;8(5):984–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kremers WK, Devarbhavi HC, Wiesner RH, et al. Post-transplant lymphoproliferative disorders following liver transplantation: incidence, risk factors and survival. Am J Transplant. 2006;6(5 Pt 1):1017–24.

    Article  CAS  PubMed  Google Scholar 

  21. Quinlan SC, Pfeiffer RM, Morton LM, et al. Risk factors for early-onset and late-onset post-transplant lymphoproliferative disorder in kidney recipients in the United States. Am J Hematol. 2011;86(2):206–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1(7335):702–3.

    Article  CAS  PubMed  Google Scholar 

  23. Pope JH, Horne MK, Scott W. Transformation of foetal human keukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like virus. Int J Cancer. 1968;3(6):857–66.

    Article  CAS  PubMed  Google Scholar 

  24. Rickinson AB, Rowe M, Hart IJ, et al. T-cell-mediated regression of “spontaneous” and of Epstein-Barr virus-induced B-cell transformation in vitro: studies with cyclosporin A. Cell Immunol. 1984;87(2):646–58.

    Article  CAS  PubMed  Google Scholar 

  25. Balfour Jr HH, Odumade OA, Schmeling DO, et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis. 2013;207(1):80–8. doi:10.1093/infdis/jis646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crawford DH, Macsween KF, Higgins CD, et al. A cohort study among university students: identification of risk factors for Epstein-Barr virus seroconversion and infectious mononucleosis. Clin Infect Dis. 2006;43(3):276–82.

    Article  PubMed  Google Scholar 

  27. Hislop AD, Gudgeon NH, Callan MF, et al. EBV-specific CD8+ T cell memory: relationships between epitope specificity, cell phenotype, and immediate effector function. J Immunol. 2001;167(4):2019–29.

    Article  CAS  PubMed  Google Scholar 

  28. Callan MF, Tan L, Annels N, Ogg GS, et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus In vivo. J Exp Med. 1998;187(9):1395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pudney VA, Leese AM, Rickinson AB, et al. CD8+ immunodominance among Epstein-Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. J Exp Med. 2005;201(3):349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Long HM, Chagoury OL, Leese AM, et al. MHC II tetramers visualize human CD4+ T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med. 2013;210(5):933–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abbott RJ, Quinn LL, Leese AM, et al. CD8+ T cell responses to lytic EBV infection: late antigen specificities as subdominant components of the total response. J Immunol. 2013;191(11):5398–409.

    Article  CAS  PubMed  Google Scholar 

  32. Leen A, Meij P, Redchenko I, et al. Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J Virol. 2001;75(18):8649–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rickinson AB and Kieff E. Fields Virology. 4th edition. Knipe DM and Howley PM (eds.) Lippincott Williams &Wilkins Publishers: Philadelphia. 2001, pp 3812–3863.

  34. Kaiser C, Laux G, Eick D, et al. The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol. 1999;73:4481–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene. 2003;22(33):5108–21.

    Article  CAS  PubMed  Google Scholar 

  36. Ma SD, Yu X, Mertz JE, et al. An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol. 2012;86(15):7976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Henderson S, Rowe M, Gregory C, Croom-Carter D, et al. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991;65(7):1107–15.

    Article  CAS  PubMed  Google Scholar 

  38. Uchida J, Yasui T, Takaoka-Shichijo Y, et al. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science. 1999;286(5438):300–3.

    Article  CAS  PubMed  Google Scholar 

  39. Wang F, Gregory C, Sample C, et al. Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol. 1990;64(5):2309–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sakai T, Taniguchi Y, Tamura K, et al. Functional replacement of the intracellular region of the Notch1 receptor by Epstein-Barr virus nuclear antigen 2. J Virol. 1998;72(7):6034–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gahn TA, Schildkraut CL. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell. 1989;58(3):527–35.

    Article  CAS  PubMed  Google Scholar 

  42. Jones CH, Hayward SD, Rawlins DR. Interaction of the lymphocyte-derived Epstein-Barr virus nuclear antigen EBNA-1 with its DNA-binding sites. J Virol. 1989;63(1):101–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Radkov SA, Bain M, Farrell PJ, et al. Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol. 1997;71(11):8552–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Allday MJ, Farrell PJ. Epstein-Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J Virol. 1994;68(6):3491–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Parker GA, Crook T, Bain M, et al. Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene. 1996;13(12):2541–9.

    CAS  PubMed  Google Scholar 

  46. Fruehling S, Longnecker R. The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology. 1997;235(2):241–51.

    Article  CAS  PubMed  Google Scholar 

  47. Caldwell RG, Wilson JB, Anderson SJ, et al. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9(3):405–11.

    Article  CAS  PubMed  Google Scholar 

  48. Clemens MJ, Laing KG, Jeffrey IW, et al. Regulation of the interferon-inducible eIF-2 alpha protein kinase by small RNAs. Biochimie. 1994;76(8):770–8.

    Article  CAS  PubMed  Google Scholar 

  49. Ressing ME, Horst D, Griffin BD, et al. Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol. 2008;18(6):397–408.

    Article  CAS  PubMed  Google Scholar 

  50. Young LS, Dawson CW, Eliopoulos AG. Epstein-Barr virus and apoptosis: viral mimicry of cellular pathways. Biochem Soc Trans. 1999;27(6):807–12.

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki T, Tahara H, Narula S, et al. Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J Exp Med. 1995;182(2):477–86.

    Article  CAS  PubMed  Google Scholar 

  52. Gires O, Zimber-Strobl U, Gonnella R, et al. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 1997;16(20):6131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kilger E, Kieser A, Baumann M, et al. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 1998;17(6):1700–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kulwichit W, Edwards RH, Davenport EM, et al. Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A. 1998;95(20):11963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985;43(3 Pt 2):831–40.

    Article  CAS  PubMed  Google Scholar 

  56. Wilson JB, Bell JL, Levine AJ. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 1996;15(12):3117–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Levitskaya J, Sharipo A, Leonchiks A, et al. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci U S A. 1997;94(23):12616–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khanna R, Burrows SR, Steigerwald-Mullen PM, et al. Targeting Epstein-Barr virus nuclear antigen 1 (EBNA1) through the class II pathway restores immune recognition by EBNA1-specific cytotoxic T lymphocytes: evidence for HLA-DM-independent processing. Int Immunol. 1997;9(10):1537–43.

    Article  CAS  PubMed  Google Scholar 

  59. Münz C, Bickham KL, Subklewe M, et al. Human CD4(+) T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J Exp Med. 2000;191(10):1649–60.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Robertson ES, Ooka T, Kieff ED. Epstein-Barr virus vectors for gene delivery to B lymphocytes. Proc Natl Acad Sci U S A. 1996;93(21):11334–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rochford R, Mosier DE. Differential Epstein-Barr virus gene expression in B-cell subsets recovered from lymphomas in SCID mice after transplantation of human peripheral blood lymphocytes. J Virol. 1995;69(1):150–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Montone KT, Hodinka RL, Salhany KE, et al. Identification of Epstein-Barr virus lytic activity in post-transplantation lymphoproliferative disease. Mod Pathol. 1996;9(6):621–30.

    CAS  PubMed  Google Scholar 

  63. Rea D, Fourcade C, Leblond V, et al. Patterns of Epstein-Barr virus latent and replicative gene expression in Epstein-Barr virus B cell lymphoproliferative disorders after organ transplantation. Transplantation. 1994;58(3):317–24.

    Article  CAS  PubMed  Google Scholar 

  64. Tanner JE, Menezes J. Interleukin-6 and Epstein-Barr virus induction by cyclosporine A: potential role in lymphoproliferative disease. Blood. 1994;84(11):3956–64.

    CAS  PubMed  Google Scholar 

  65. Campo E, Swerdlow SH, Harris NL, et al. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Parker A, Bowles K, Bradley JA, et al. Diagnosis of post-transplant lymphoproliferative disorder in solid organ transplant recipients—BCSH and BTS Guidelines. Br J Haematol. 2010;149(5):675–92.

    Article  PubMed  Google Scholar 

  67. Evens AM, Roy R, Sterrenberg D, et al. Post-transplantation lymphoproliferative disorders: diagnosis, prognosis, and current approaches to therapy. Curr Oncol Rep. 2010;12(6):383–94.

    Article  PubMed  Google Scholar 

  68. Singavi AK, Harrington AM, Fenske TS. Post-transplant lymphoproliferative disorders. Cancer Treat Res. 2015;165:305–27.

    Article  PubMed  Google Scholar 

  69. Mucha K, Foroncewicz B, Ziarkiewicz-Wróblewska B, et al. Post-transplant lymphoproliferative disorder in view of the new WHO classification: a more rational approach to a protean disease? Nephrol Dial Transplant. 2010;25(7):2089–98.

    Article  PubMed  Google Scholar 

  70. Abed N, Casper JT, Camitta BM, et al. Evaluation of histogenesis of B-lymphocytes in pediatric EBV-related post-transplant lymphoproliferative disorders. Bone Marrow Transplant. 2004;33(3):321–7.

    Article  CAS  PubMed  Google Scholar 

  71. Capello D, Cerri M, Muti G, et al. Molecular histogenesis of posttransplantation lymphoproliferative disorders. Blood. 2003;102(10):3775–85.

    Article  CAS  PubMed  Google Scholar 

  72. Quinlan SC, Pfeiffer RM, Morton LM, et al. Risk factors for early-onset and late-onset post-transplant lymphoproliferative disorder in kidney recipients in the United States. Am J Hematol. 2011;86(2):206–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Taylor AL, Marcus R, Bradley JA. Post-transplant lymphoproliferative disorders (PTLD) after solid organ transplantation. Crit Rev Oncol Hematol. 2005;56(1):155–67.

    Article  PubMed  Google Scholar 

  74. Starzl TE, Nalesnik MA, Porter KA, et al. Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet. 1984;1(8377):583–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Torre D, Tambini R. Acyclovir for treatment of infectious mononucleosis: a meta-analysis. Scand J Infect Dis. 1999;31(6):543–7.

    Article  CAS  PubMed  Google Scholar 

  76. Perrine SP, Hermine O, Small T, et al. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies. Blood. 2007;109(6):2571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roychowdhury S, Peng R, Baiocchi RA, et al. Experimental treatment of Epstein-Barr virus-associated primary central nervous system lymphoma. Cancer Res. 2003;63(5):965–71.

    CAS  PubMed  Google Scholar 

  78. Benkerrou M, Durandy A, Fischer A. Therapy for transplant-related lymphoproliferative diseases. Hematol Oncol Clin North Am. 1993;7(2):467–75. Review.

    CAS  PubMed  Google Scholar 

  79. Cacciarelli TV, Green M, Jaffe R, et al. Management of posttransplant lymphoproliferative disease in pediatric liver transplant recipients receiving primary tacrolimus (FK506) therapy. Transplantation. 1998;66(8):1047–52.

    Article  CAS  PubMed  Google Scholar 

  80. Cesarman E, Chadburn A, Liu YF, et al. BCL-6 gene mutations in posttransplantation lymphoproliferative disorders predict response to therapy and clinical outcome. Blood. 1998;92(7):2294–302.

    CAS  PubMed  Google Scholar 

  81. Tsai DE, Hardy CL, Tomaszewski JE, et al. Reduction in immunosuppression as initial therapy for posttransplant lymphoproliferative disorder: analysis of prognostic variables and long-term follow-up of 42 adult patients. Transplantation. 2001;71(8):1076–88.

    Article  CAS  PubMed  Google Scholar 

  82. Porcu P, Eisenbeis CF, Pelletier RP, et al. Successful treatment of posttransplantation lymphoproliferative disorder (PTLD) following renal allografting is associated with sustained CD8(+) T-cell restoration. Blood. 2002;100(7):2341–8.

    Article  CAS  PubMed  Google Scholar 

  83. Khatri VP, Baiocchi RA, Peng R, et al. Endogenous CD8+ T cell expansion during regression of monoclonal EBV-associated posttransplant lymphoproliferative disorder. J Immunol. 1999;163(1):500–6.

    CAS  PubMed  Google Scholar 

  84. Rouphael B, Lankireddy S, Lazaryan A, et al. Outcomes of kidney retransplantation in recipients with prior post-transplant lymphoproliferative disorder. Clin Transplant. 2016;30(1):60–5.

    Article  PubMed  Google Scholar 

  85. Hartlage AS, Liu T, Patton JT, et al. The Epstein-Barr virus lytic protein BZLF1 as a candidate target antigen for vaccine development. Cancer Immunol Res. 2015;3(7):787–94. This study shows the ability to vaccinate hu-PBL-SCID mice against EBV and delay onset of EBV associated lymhoproliferative disease.

    Article  CAS  PubMed  Google Scholar 

  86. Jones K, Nourse JP, Morrison L, et al. Expansion of EBNA1-specific effector T cells in posttransplantation lymphoproliferative disorders. Blood. 2010;116(13):2245–52.

    Article  CAS  PubMed  Google Scholar 

  87. Sebelin-Wulf K, Nguyen TD, Oertel S, et al. Quantitative analysis of EBV-specific CD4/CD8 T cell numbers, absolute CD4/CD8 T cell numbers and EBV load in solid organ transplant recipients with PLTD. Transpl Immunol. 2007;17(3):203–10.

    Article  CAS  PubMed  Google Scholar 

  88. Swinnen LJ, Mullen GM, Carr TJ, et al. Aggressive treatment for postcardiac transplant lymphoproliferation. Blood. 1995;86(9):3333–40.

    CAS  PubMed  Google Scholar 

  89. Choquet S, Trappe R, Leblond V, et al. CHOP-21 for the treatment of post-transplant lymphoproliferative disorders (PTLD) following solid organ transplantation. Haematologica. 2007;92(2):273–4.

    Article  PubMed  Google Scholar 

  90. Elstrom RL, Andreadis C, Aqui NA, et al. Treatment of PTLD with rituximab or chemotherapy. Am J Transplant. 2006;6(3):569–76.

    Article  CAS  PubMed  Google Scholar 

  91. Evens AM, David KA, Helenowski I, et al. Multicenter analysis of 80 solid organ transplantation recipients with post-transplantation lymphoproliferative disease: outcomes and prognostic factors in the modern era. J Clin Oncol. 2010;28(6):1038–46.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bollard CM, Gottschalk S, Torrano V, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol. 2014;32(8):798–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Koehne G, Smith KM, Ferguson TL, et al. Quantitation, selection, and functional characterization of Epstein-Barr virus-specific and alloreactive T cells detected by intracellular interferon-gamma production and growth of cytotoxic precursors. Blood. 2002;99(5):1730–40.

    Article  CAS  PubMed  Google Scholar 

  94. Bollard CM, Rooney CM, Heslop HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol. 2012;9(9):510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Haque T, Wilkie GM, Jones MM, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):1123–31.

    Article  CAS  PubMed  Google Scholar 

  96. Doubrovina E, Oflaz-Sozmen B, Prockop SE, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119(11):2644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Savoldo B, Goss JA, Hammer MM, et al. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood. 2006;108(9):2942–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Peggs KS, Verfuerth S, Pizzey A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 2003;362(9393):1375–7.

    Article  PubMed  Google Scholar 

  100. Ricciardelli I, Brewin J, Lugthart G, et al. Rapid generation of EBV-specific cytotoxic T lymphocytes resistant to calcineurin inhibitors for adoptive immunotherapy. Am J Transplant. 2013;13(12):3244–52. Ability to produce CTLs which are effective and resistant to calcineurin inhibitors could allow for effect treatment without risk of rejection.

    Article  CAS  PubMed  Google Scholar 

  101. Dierksheide JE, Baiocchi RA, Ferketich AK, et al. IFN-gamma gene polymorphisms associate with development of EBV+ lymphoproliferative disease in hu PBL-SCID mice. Blood. 2005;105(4):1558–65.

    Article  CAS  PubMed  Google Scholar 

  102. Lee TC, Savoldo B, Barshes NR, et al. Use of cytokine polymorphisms and Epstein-Barr virus viral load to predict development of post-transplant lymphoproliferative disorder in paediatric liver transplant recipients. Clin Transplant. 2006;20(3):389–93.

    Article  PubMed  Google Scholar 

  103. McAulay KA, Haque T, Crawford DH. Tumour necrosis factor gene polymorphism: a predictive factor for the development of post-transplant lymphoproliferative disease. Br J Cancer. 2009;101(6):1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Babel N, Vergopoulos A, Trappe RU, et al. Evidence for genetic susceptibility towards development of posttransplant lymphoproliferative disorder in solid organ recipients. Transplantation. 2007;84(3):387–91.

    Article  PubMed  Google Scholar 

  105. Lustberg ME, Pelletier RP, Porcu P, et al. Human leukocyte antigen type and posttransplant lymphoproliferative disorder. Transplantation. 2015;99(6):1220–5. This study showed an association between HLA-B8 and EBV+ PTLD as well as HLA-B40 and EBV- PTLD.

    Article  CAS  PubMed  Google Scholar 

  106. Jones K, Wockner L, Thornton A, et al. HLA class I associations with EBV+ post-transplant lymphoproliferative disorder. Transpl Immunol. 2015;32(2):126–30. This study was unable to reproduce any of the previous reports of HLA class I associations with EBV+ PTLD.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Baiocchi.

Ethics declarations

Conflict of Interest

Timothy Voorhees declares no conflict of interest.

Robert Baiocchi reports a patent Methods to Treat or Prevent Viral-Associated Lymphoproliferative Disorders, issued February 2014 (#207-0536827), and a patent granted for Viral Gene Products and Methods for Vaccination to Prevent Viral Associated Diseases (granted March 2014, #2008-541493).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Kidney Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voorhees, T.J., Baiocchi, R.A. Post-transplant Lymphoproliferative Disorder (PTLD): Infection, Cancer?. Curr Transpl Rep 3, 145–153 (2016). https://doi.org/10.1007/s40472-016-0102-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-016-0102-0

Keywords

Navigation