Skip to main content

Advertisement

Log in

The Importance of Addressing Early-Life Environmental Exposures in Cancer Epidemiology

  • Cancer Epidemiology (MB Terry, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Environmental exposures during early stages of life may be particularly relevant for cancer etiology because of the rapid hormonal and tissue changes that occur during puberty and, in women, through first birth. We review evidence from the past 5 years on environmental exposures during childhood/adolescence through first birth and the risk of breast and other cancers during adulthood.

Recent Findings

The studies of breast cancer (n = 14) reported associations for childhood/adolescent environmental tobacco smoke (ETS), smoking initiation, pesticides, hair dye use, and living on a road with high traffic. Smoking before first childbirth was also associated with increased breast cancer risk. We identified 12 studies on other cancers, with only 1–2 studies per cancer type, with most focused on ETS or active smoking.

Summary

Despite studies suggesting an important role of exposure to environmental factors during early life and cancer risk in adulthood, few studies have been conducted. Future studies could utilize stored biologic samples from relevant periods or complete residential histories for geographically-based exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This article did not involve the use of raw data.

References

  1. President’s Cancer Panel. Reducing environmental cancer risk: what can we do now. Bethesda: National Cancer Institute; 2010.

    Google Scholar 

  2. Russo J, Russo IH. Development of the human breast. Maturitas. 2004;49(1):2–15.

    Article  CAS  PubMed  Google Scholar 

  3. Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol. 2012;1(4):533–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Terry MB, Michels KB, Brody JG, Byrne C, Chen S, Jerry DJ, Malecki KMC, Martin MB, Miller RL, Neuhausen SL, et al. Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research. Breast Cancer Res. 2019;21(1):96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fenton SE. Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology. 2006;147(6 Suppl):S18–24.

    Article  CAS  PubMed  Google Scholar 

  6. Martinson HA, Lyons TR, Giles ED, Borges VF, Schedin P. Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention. Exp Cell Res. 2013;319(11):1671–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russo J, Russo IH. Experimentally induced mammary tumors in rats. Breast Cancer Res Treat. 1996;39(1):7–20.

    Article  CAS  PubMed  Google Scholar 

  8. Russo J, Hu YF, Yang X, Russo IH. Developmental, cellular, and molecular basis of human breast cancer. J Natl Cancer Inst Monogr. 2000;27:17–37.

    Article  CAS  Google Scholar 

  9. Bodicoat DH, Schoemaker MJ, Jones ME, McFadden E, Griffin J, Ashworth A, Swerdlow AJ. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast Cancer Res. 2014;16(1):R18.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goldberg M, D’Aloisio AA, O'Brien KM, Zhao S, Sandler DP. Pubertal timing and breast cancer risk in the Sister Study cohort. Breast Cancer Res. 2020;22(1):112.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Biro FM, Huang B, Wasserman H, Gordon CM, Pinney SM. Pubertal growth, IGF-1, and windows of susceptibility: puberty and future breast cancer risk. J Adolesc Health. 2021;68(3):517–22.

    Article  PubMed  Google Scholar 

  12. Henderson BE, Feigelson HS. Hormonal carcinogenesis. Carcinogenesis. 2000;21(3):427–33.

    Article  CAS  PubMed  Google Scholar 

  13. Henderson BE, Ross RK, Pike MC, Casagrande JT. Endogenous hormones as a major factor in human cancer. Cancer Res. 1982;42(8):3232–9.

    CAS  PubMed  Google Scholar 

  14. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92(18):1472–89.

    Article  CAS  PubMed  Google Scholar 

  15. Mantovani A, Fucic A. Puberty dysregulation and increased risk of disease in adult life: possible modes of action. Reprod Toxicol (Elmsford, NY). 2014;44:15–22.

    Article  CAS  Google Scholar 

  16. Kripke M, Brody JG, Hawk E, Hernandez AB, Hoppin PJ, Jacobs MM, Rudel RA, Rebbeck TR. Rethinking environmental carcinogenesis. Cancer Epidemiol Biomark Prevent. 2020;29(10):1870–5.

    Article  Google Scholar 

  17. Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol. 2002;31(2):285–93.

    Article  PubMed  Google Scholar 

  18. Williams PG, Holmbeck GN, Greenley RN. J Consult Clin Psychol. 2002;70(3):828.

    Article  PubMed  Google Scholar 

  19. Dorn LD, Hostinar CE, Susman EJ, Pervanidou P. Conceptualizing puberty as a window of opportunity for impacting health and well-being across the life span. J Res Adolesc. 2019;29(1):155–76.

    Article  PubMed  Google Scholar 

  20. Gaston SA, James-Todd T, Harmon Q, Taylor KW, Baird D, Jackson CL. Chemical/straightening and other hair product usage during childhood, adolescence, and adulthood among African-American women: potential implications for health. J Expos Sci Environ Epidemiol. 2020;30(1):86–96.

    Article  CAS  Google Scholar 

  21. Hart LB, Walker J, Beckingham B, Shelley A, Alten Flagg M, Wischusen K, Sundstrom B. A characterization of personal care product use among undergraduate female college students in South Carolina, USA. J Expos Sci Environ Epidemiol. 2020;30(1):97–106.

    Article  Google Scholar 

  22. Harley KG, Kogut K, Madrigal DS, Cardenas M, Vera IA, Meza-Alfaro G, She J, Gavin Q, Zahedi R, Bradman A, et al. Reducing phthalate, paraben, and phenol exposure from personal care products in adolescent girls: findings from the HERMOSA Intervention Study. Environ Health Perspect. 2016;124(10):1600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zota AR, Singla V, Adamkiewicz G, Mitro SD, Dodson RE. Reducing chemical exposures at home: opportunities for action. J Epidemiol Community Health. 2017;71(9):937–40.

    Article  Google Scholar 

  24. Colditz GA, Bohlke K. Priorities for the primary prevention of breast cancer. CA Cancer J Clin. 2014;64(3):186–94.

    Article  PubMed  Google Scholar 

  25. Hiatt RA, Haslam SZ, Osuch J. The breast cancer and the environment research centers: transdisciplinary research on the role of the environment in breast cancer etiology. Environ Health Perspect. 2009;117(12):1814–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holman DM, Rodriguez JL, Peipins L, Watson M, White MC. Highlights from a workshop on opportunities for cancer prevention during preadolescence and adolescence. J Adolesc Health. 2013;52(5 Supplement):S8–S14.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mahabir S, Aagaard K, Anderson LM, Herceg Z, Hiatt RA, Hoover RN, Linet MS, Medina D, Potischman N, Tretli S, et al. Challenges and opportunities in research on early-life events/exposures and cancer development later in life. Cancer Causes Control. 2012;23(6):983–90.

    Article  PubMed  Google Scholar 

  28. Rodgers KM, Udesky JO, Rudel RA, Brody JG. Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms. Environ Res. 2018;160:152–82.

    Article  CAS  PubMed  Google Scholar 

  29. White AJ, D'Aloisio AA, Nichols HB, DeRoo LA, Sandler DP. Breast cancer and exposure to tobacco smoke during potential windows of susceptibility. Cancer Causes Control. 2017;28(7):667–75.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee PN, Hamling JS. Environmental tobacco smoke exposure and risk of breast cancer in nonsmoking women. An updated review and meta-analysis. Inhal Toxicol. 2016;28(10):431–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gram IT, Park SY, Maskarinec G, Wilkens LR, Haiman CA, Le Marchand L. Smoking and breast cancer risk by race/ethnicity and oestrogen and progesterone receptor status: the Multiethnic Cohort (MEC) study. Int J Epidemiol. 2019;48(2):501–11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jones ME, Schoemaker MJ, Wright LB, Ashworth A, Swerdlow AJ. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017;19(1):118.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gaudet MM, Carter BD, Brinton LA, Falk RT, Gram IT, Luo J, Milne RL, Nyante SJ, Weiderpass E, Beane Freeman LE, et al. Pooled analysis of active cigarette smoking and invasive breast cancer risk in 14 cohort studies. Int J Epidemiol. 2017;46(3):881–93.

    PubMed  Google Scholar 

  34. Li H, Terry MB, Antoniou AC, Phillips KA, Kast K, Mooij TM, Engel C, Noguès C, Stoppa-Lyonnet D, Lasset C, et al. Alcohol consumption, cigarette smoking, and risk of breast cancer for BRCA1 and BRCA2 mutation carriers: results from the BRCA1 and BRCA2 cohort consortium. Cancer Epidemiol Biomark Prevent. 2020;29(2):368–78.

    Article  CAS  Google Scholar 

  35. Andersen ZJ, Jørgensen JT, Grøn R, Brauner EV, Lynge E. Active smoking and risk of breast cancer in a Danish nurse cohort study. BMC Cancer. 2017;17(1):556.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bachelet D, Verner M-A, Neri M, Cordina Duverger É, Charlier C, Arveux P, Haddad S, Guénel P. Breast Cancer and exposure to organochlorines in the CECILE study: associations with plasma levels measured at the time of diagnosis and estimated during adolescence. Int J Environ Res Public Health. 2019;16(2):271.

    Article  CAS  PubMed Central  Google Scholar 

  37. Cohn BA, Cirillo PM, Terry MB. DDT and breast cancer: prospective study of induction time and susceptibility windows. J Natl Cancer Inst. 2019;111(8):803–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Niehoff NM, Nichols HB, White AJ, Parks CG, D'Aloisio AA, Sandler DP. Childhood and adolescent pesticide exposure and breast cancer risk. Epidemiology (Cambridge, Mass). 2016;27(3):326–33.

    Article  Google Scholar 

  39. Shmuel S, White AJ, Sandler DP. Residential exposure to vehicular traffic-related air pollution during childhood and breast cancer risk. Environ Res. 2017;159:257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rai R, Glass DC, Heyworth JS, Saunders C, Fritschi L. Occupational exposures to engine exhausts and other PAHs and breast cancer risk: a population-based case-control study. Am J Ind Med. 2016;59(6):437–44.

    Article  PubMed  Google Scholar 

  41. White AJ, Gregoire AM, Taylor KW, Eberle C, Gaston S, O'Brien KM, Jackson CL, Sandler DP. Adolescent use of hair dyes, straighteners and perms in relation to breast cancer risk. Int J Cancer. 2021;148(9):2255–63.

    Article  CAS  PubMed  Google Scholar 

  42. Vieira VM, VoPham T, Bertrand KA, James P, DuPré N, Tamimi RM, Laden F, Hart JE. Contribution of socioeconomic and environmental factors to geographic disparities in breast cancer risk in the Nurses’ Health Study II. Environ Epidemiol (Philadelphia, Pa). 2020;4(1):e080.

    Article  Google Scholar 

  43. Wang T, Townsend MK, Vinci C, Jake-Schoffman DE, Tworoger SS. Early life exposure to tobacco smoke and ovarian cancer risk in adulthood. Int J Epidemiol. 2021.

  44. Moirano G, Zugna D, Grasso C, Mirabelli D, Lista P, Ciuffreda L, Segnan N, Merletti F, Richiardi L. Postnatal risk factors for testicular cancer: the EPSAM case-control study. Int J Cancer. 2017;141(9):1803–10.

    Article  CAS  PubMed  Google Scholar 

  45. Abdel-Rahman O. Incidence and mortality of lung cancer among never smokers in relationship to secondhand smoking: findings from the PLCO trial. Clin Lung Cancer. 2020;21(5):415–420.e412.

    Article  PubMed  Google Scholar 

  46. Molina-Montes E, Van Hoogstraten L, Gomez-Rubio P, Löhr M, Sharp L, Molero X, Márquez M, Michalski CW, Farré A, Perea J, et al. Pancreatic cancer risk in relation to lifetime smoking patterns, tobacco type, and dose-response relationships. Cancer Epidemiol Biomark Prevent. 2020;29(5):1009–18.

    Article  Google Scholar 

  47. Wong JYY, Downward GS, Hu W, Portengen L, Seow WJ, Silverman DT, Bassig BA, Zhang J, Xu J, Ji BT, et al. Lung cancer risk by geologic coal deposits: a case-control study of female never-smokers from Xuanwei and Fuyuan, China. Int J Cancer. 2019;144(12):2918–27.

    Article  CAS  PubMed  Google Scholar 

  48. Würtz ET, Hansen J, Røe OD, Omland Ø. Asbestos exposure and haematological malignancies: a Danish cohort study. Eur J Epidemiol. 2020;35(10):949–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Deziel NC, Warren JL, Huang H, Zhou H, Sjodin A, Zhang Y. Exposure to polychlorinated biphenyls and organochlorine pesticides and thyroid cancer in Connecticut women. Environ Res. 2021;192:110333.

    Article  CAS  PubMed  Google Scholar 

  50. Utada M, Brenner AV, Preston DL, Cologne JB, Sakata R, Sugiyama H, Sadakane A, Grant EJ, Cahoon EK, Ozasa K, et al. Radiation risks of uterine cancer in atomic bomb survivors: 1958–2009. JNCI Cancer Spectrum. 2019;2(4).

  51. Weinberg CR, Shore DL, Umbach DM, Sandler DP. Using risk-based sampling to enrich cohorts for endpoints, genes, and exposures. Am J Epidemiol. 2007;166(4):447–55.

    Article  PubMed  Google Scholar 

  52. Oh SM, Ryu BT, Lee SK, Chung KH. Antiestrogenic potentials of ortho-PCB congeners by single or complex exposure. Arch Pharm Res. 2007;30(2):199–209.

    Article  CAS  PubMed  Google Scholar 

  53. Cohn BA, Wolff MS, Cirillo PM, Sholtz RI. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007;115(10):1406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li M, Liu X, Zhang L. The relationship of indoor coal use and environmental tobacco smoke exposure with lung cancer in China: a meta-analysis. J Cancer Res Ther. 2018;14(8):7–13.

    Article  CAS  Google Scholar 

  55. Yan H, Ying Y, Xie H, Li J, Wang X, He L, Jin K, Tang J, Xu X, Zheng X. Secondhand smoking increases bladder cancer risk in nonsmoking population: a meta-analysis. Cancer Manag Res. 2018;10:3781–91.

    Article  PubMed  PubMed Central  Google Scholar 

  56. van Osch FH, Jochems SH, van Schooten F-J, Bryan RT, Zeegers MP. Quantified relations between exposure to tobacco smoking and bladder cancer risk: a meta-analysis of 89 observational studies. Int J Epidemiol. 2016;45(3):857–70.

    Article  PubMed  Google Scholar 

  57. Lee PN, Thornton AJ, Hamling JS. Epidemiological evidence on environmental tobacco smoke and cancers other than lung or breast. Regul Toxicol Pharmacol. 2016;80:134–63.

    Article  CAS  PubMed  Google Scholar 

  58. International Agency for Research on Cancer. Personal habits and indoor combustions, vol. 100E. Lyon: World Health Organization; 2012.

    Google Scholar 

  59. Moon MK. Concern about the safety of bisphenol A substitutes. Diabetes Metab J. 2019;43(1):46–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Birnbaum LS, Grandjean P. Alternatives to PFASs: perspectives on the science. Environ Health Perspect. 2015;123(5):A104–5.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hamra GB, Buckley JP. Environmental exposure mixtures: questions and methods to address them. Curr Epidemiol Rep. 2018;5(2):160–5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Breast Cancer and the Environment Research Program [https://epi.grants.cancer.gov/bcerp/]

Download references

Code Availability

This article did not involve the use of code

Funding

This research was supported by the Intramural Research Program of the National Institute of Health, National Institute of Environmental Health Sciences, project number ZIAES103332-01

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra J. White.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cancer Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niehoff, N.M., Goldberg, M. & White, A.J. The Importance of Addressing Early-Life Environmental Exposures in Cancer Epidemiology. Curr Epidemiol Rep 9, 49–65 (2022). https://doi.org/10.1007/s40471-022-00289-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-022-00289-6

Keywords

Navigation