Skip to main content
Log in

Dynamics of stability, bifurcation and control for a commensal symbiosis model

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This article investigates a three-species delayed population model comprising a generalist predator and two prey populations, one of which is commensal. The conditions for the uniqueness and local stability of the equilibria are derived. Additionally, a suitable Lyapunov function is constructed to demonstrate the local stability of the interior equilibrium point in the presence of the delay values. The existence of Hopf bifurcation is investigated with respect to the delay parameters, and the necessary conditions are obtained. The Z-type control mechanism is applied to the system so that the controllers can drive the populations to the desired states. Numerical simulations are conducted to validate the results for specific parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Molles M (2015) Ecology: concepts and applications. McGraw-Hill Education

    Google Scholar 

  2. Arditi R, Abillon JM, Da Silva JV (1978) A predator-prey model with satiation and intraspecific competition. Ecol Model 5(3):173–191

    Article  Google Scholar 

  3. Gourley SA, Kuang Y (2004) A stage structured predator–prey model and its dependence on maturation delay and death rate. J Math Biol 49(2):188–200

    Article  MathSciNet  Google Scholar 

  4. Haque M (2011) A detailed study of the Beddington–DeAngelis predator–prey model. Math Biosci 234(1):1–16

    Article  MathSciNet  Google Scholar 

  5. Wu R (2018) Dynamic behaviors of a nonlinear Amensalism model. Adv Differ Equ 2018:1–13

    Article  MathSciNet  Google Scholar 

  6. Guan X, Chen F (2019) Dynamical analysis of a two species Amensalism model with Beddington–DeAngelis functional response and Allee effect on the second species. Nonlinear Anal: Real World Appl 48:71–93

    Article  MathSciNet  Google Scholar 

  7. Fan X, Wang Z, Jiang F (2012) Dynamics of mutualism-competition-predator system with Beddington–DeAngelis functional responses and impulsive perturbations. Abstract and applied analysis

  8. Li TT, Chen FD, Chen JH, Lin QX (2017) Stability of a stage-structured plant-pollinator mutualism model with the Beddington–DeAngelis functional response. Nonlinear Funct Anal

  9. Li M, Gao H, Sun C, Gong Y (2015) Analysis of a mutualism model with stochastic perturbations. Int J Biomath 8(06):1550072

    Article  MathSciNet  Google Scholar 

  10. Liu M, Bai C (2020) Optimal harvesting of a stochastic mutualism model with regime-switching. Appl Math Comput 373:125040

    MathSciNet  Google Scholar 

  11. Holland NJ (2012) Population dynamics of mutualism. Nat Educ Knowl 3(6):2

    Google Scholar 

  12. Liu M, Bai C (2016) Optimal harvesting of a stochastic mutualism model with Lévy jumps. Appl Math Comput 276:301–309

    MathSciNet  Google Scholar 

  13. Gibbs JP, Stanton EJ (2001) Habitat fragmentation and arthropod community change: carrion beetles, phoretic mites, and flies. Ecol Appl 11(1):79–85

    Article  Google Scholar 

  14. Mougeot F, Rodríguez Ramiro J (2019) Commensal association of the common kingfisher with foraging Eurasian otters. Ethology 125(12):965–971

    Article  Google Scholar 

  15. Lang SD, Farine DR (2017) A multidimensional framework for studying social predation strategies. Nat Ecol Evolut 1(9):1230–1239

    Article  Google Scholar 

  16. Veit RR, Harrison NM (2017) Positive interactions among foraging seabirds, marine mammals and fishes and implications for their conservation. Front Ecol Evolut 5:121

    Article  Google Scholar 

  17. Thiebot JB, Weimerskirch H (2013) Contrasted associations between seabirds and marine mammals across four biomes of the southern Indian Ocean. J Ornithol 154:441–453

    Article  Google Scholar 

  18. Mathis KA, Bronstein JL (2020) Our current understanding of commensalism. Ann Rev Ecol Evolut System 51:167–189

    Article  Google Scholar 

  19. Munguia P, Ojanguren AF, Evans AN, Ryckman L, Gemmell B, Cook C, Hensgen G (2009) Is facilitation a true species interaction? Open Ecol J 2(1):83–85

    Article  Google Scholar 

  20. Jiang Q, Liu Z, Wang Q, Tan R, Wang L (2022) Two delayed commensalism models with noise coupling and interval biological parameters. J Appl Math Comput 68(2):979–1011

    Article  MathSciNet  Google Scholar 

  21. Lei C (2018) Dynamic behaviors of a stage-structured commensalism system. Adv Differ Equ 2018(1):1–20

    MathSciNet  Google Scholar 

  22. Georgescu P, Maxin D, Zhang H (2017) Global stability results for models of commensalism. Int J Biomath 10(03):1750037

    Article  MathSciNet  Google Scholar 

  23. Zhang JF (2012) Global existence of bifurcated periodic solutions in a commensalism model with delays. Appl Math Comput 218(23):11688–11699

    MathSciNet  Google Scholar 

  24. Ghorai S, Poria S (2017) Pattern formation in a system involving prey-predation, competition and commensalism. Nonlinear Dyn 89(2):1309–1326

    Article  Google Scholar 

  25. Lin Q (2018) Allee effect increasing the final density of the species subject to the Allee effect in a Lotka–Volterra commensal symbiosis model. Adv Differ Equ 2018(1):1–9

    Article  MathSciNet  Google Scholar 

  26. Gopalsamy K (2013) Stability and oscillations in delay differential equations of population dynamics, vol 74. Springer Science & Business Media, UK

    Google Scholar 

  27. Hutchinson GE (1948) Circular causal systems in ecology. Ann NY Acad Sci 50(4):221–246

  28. Das S, Das P, Das P (2020) Dynamics and control of multidrug-resistant bacterial infection in hospital with multiple delays. Commun Nonlinear Sci Numer Simul 89:105279

    Article  MathSciNet  Google Scholar 

  29. Das P, Das S, Upadhyay RK, Das P (2020) Optimal treatment strategies for delayed cancer-immune system with multiple therapeutic approach. Chaos Solit Fract 136:109806

    Article  MathSciNet  Google Scholar 

  30. Das P, Upadhyay RK, Das P, Ghosh D (2020) Exploring dynamical complexity in a time-delayed tumor-immune model. Chaos: Interdiscip J Nonlinear Sci 30(12):123118

  31. Leslie PH (1948) Some further notes on the use of matrices in population mathematics. Biometrika 35(3/4):213–245

    Article  MathSciNet  Google Scholar 

  32. Aziz-Alaoui MA, Okiye MD (2003) Boundedness and global stability for a predator-prey model with modified Leslie–Gower and Holling-type II schemes. Appl Math Lett 16(7):1069–1075

    Article  MathSciNet  Google Scholar 

  33. Emery SE, Mills NJ (2020) Effects of predation pressure and prey density on short-term indirect interactions between two prey species that share a common predator. Ecol Entomol 45(4):821–830

    Article  Google Scholar 

  34. Logan JD, Wolesensky W (2009) Mathematical methods in biology, vol 96. Wiley

    Google Scholar 

  35. Aziz-Alaoui MA (2002) Study of a Leslie–Gower-type tritrophic population model. Chaos Solit Fract 14(8):1275–1293

    Article  MathSciNet  Google Scholar 

  36. Arino J, Wang L, Wolkowicz GS (2006) An alternative formulation for a delayed logistic equation. J Theor Biol 241(1):109–119

    Article  MathSciNet  Google Scholar 

  37. Kundu S, Maitra S (2016) Stability and delay in a three species predator–prey system. In: AIP conference proceedings, AIP Publishing LLC, Vol. 1751, No. 1, p 020004

  38. Freedman HL, Rao VSH (1983) The trade-off between mutual interference and time lags in predator–prey systems. Bull Math Biol 45(6):991–1004

    Article  MathSciNet  Google Scholar 

  39. Zhang Y, Li Z (2009) Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints. Phys Lett A 373(18–19):1639–1643

    Article  Google Scholar 

  40. Patra RR, Kundu S, Maitra S (2022) Effect of delay and control on a predator-prey ecosystem with generalist predator and group defence in the prey species. Eur Phys J Plus 137(1):28

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajesh Ranjan Patra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A.

$$\begin{aligned} J_{E_8}= & {} \begin{bmatrix} 1-2x^*+by^*-\frac{2a_1^2m_1x^*z^*}{\left( {x^*}^2+a_1^2\right) ^2} &{} bx^* &{} -\frac{m_1{x^*}^2}{{x^*}^2+a_1^2} \\ 0 &{} r-\frac{2ry^*}{k}-\frac{2a_2^2m_2y^*z^*}{\left( {y^*}^2+a_2^2\right) ^2} &{} -\frac{m_2{y^*}^2}{{y^*}^2+a_2^2} \\ d^2 &{} d^2 &{} -d \end{bmatrix}\\ Q_{61}= & {} d-r-1+2{\tilde{x}}+\frac{2a_1^2m_1{\tilde{x}}{\tilde{z}}}{\left( {\tilde{x}}^2+a_1^2\right) ^2},\\ Q_{62}= & {} (r-d)\left( 1-2{\tilde{x}}-\frac{2a_1^2m_1{\tilde{x}}{\tilde{z}}}{\left( {\tilde{x}}^2+a_1^2\right) ^2}\right) +\frac{d^2m_1{\tilde{x}}^2}{{\tilde{x}}^2+a_1^2}-rd,\\ Q_{63}= & {} rd\left( 1-2{\tilde{x}}-\frac{2a_1^2m_1{\tilde{x}}{\tilde{z}}}{\left( {\tilde{x}}^2+a_1^2\right) ^2}\right) -\frac{rd^2m_1{\tilde{x}}^2}{{\tilde{x}}^2+a_1^2},\\ Q_{71}= & {} d-b{\hat{y}}-r\left( 1-\frac{2{\hat{y}}}{k}\right) +\frac{2m_2a_2^2{\hat{y}}{\hat{z}}}{\left( {\hat{y}}^2+a_2^2\right) ^2},\\ Q_{72}= & {} (b{\hat{y}}-d)\left( r\left( 1-\frac{2{\hat{y}}}{k}\right) -\frac{2m_2a_2^2{\hat{y}}{\hat{z}}}{\left( {\hat{y}}^2+a_2^2\right) ^2}\right) +\frac{d^2m_2{\hat{y}}^2}{{\hat{y}}^2+a_2^2}-bd{\hat{y}},\\ Q_{73}= & {} bd{\hat{y}}\left( r\left( 1-\frac{2{\hat{y}}}{k}\right) -\frac{2m_2a_2^2{\hat{y}}{\hat{z}}}{\left( {\hat{y}}^2+a_2^2\right) ^2}\right) -\frac{bd^2m_2{\hat{y}}^3}{{\hat{y}}^2+a_2^2},\\ Q_{82}= & {} \left( 1-2x^*+by^*-\frac{2a_1^2m_1x^*z^*}{\left( {x^*}^2+a_1^2\right) ^2}\right) \left( r-\frac{2ry^*}{k}-\frac{2a_2^2m_2y^*z^*}{\left( {y^*}^2+a_2^2\right) ^2}\right) \\{} & {} -d\left( 1-2x^*+by^*-\frac{2a_1^2m_1x^*z^*}{\left( {x^*}^2 +a_1^2\right) ^2}+r-\frac{2ry^*}{k}-\frac{2a_2^2m_2y^*z^*}{\left( {y^*}^2+a_2^2\right) ^2}\right) \\{} & {} +d^2\left( \frac{m_1{x^*}^2}{{x^*}^2+a_1^2}+\frac{m_2{y^*}^2}{{y^*}^2+a_2^2}\right) ,\\ Q_{83}= & {} \text {det}(J_{E_8}), \quad Q_{81}= \text {tr}(J_{E_8}). \end{aligned}$$

Appendix B.

$$\begin{aligned} k_1 ={} & {} \frac{k_4}{2by^*z^*}\left[ \frac{2 a_1^2 m_1 x^* {z^*}^2}{\left( a_1^2+{x^*}^2\right) ^2}+\frac{2 a_2^2 m_2 y^* {z^*}^2}{\left( a_2^2+{y^*}^2\right) ^2}\right. \\{} & {} \left. +\left( \frac{2 r}{k}-b\right) y^* z^* -d^2 (x^*+y^*)-(r+1) z^*\right] \\ k_3 ={} & {} \frac{k_4}{2d^2x^*} \left[ \frac{2 a_1^2 m_1 x^* {z^*}^2}{\left( a_1^2+{x^*}^2\right) ^2}+\frac{m_2 y^* {z^*}^2}{a_2^2+{y^*}^2}-b y^* z^*+ \left( d+2 x^*-1\right) z^*\right] \\{} & {} +\frac{2m_1 x^* {z^*}^2}{a_1^2+{x^*}^2}\frac{k_1}{2d^2x^*} \\ k_2 ={} & {} \frac{\left( a_2^2+{y^*}^2\right) ^2}{2m_2 y^* {z^*}^2} \left[ k_4\left( x^*z^*- \left( 1+d+\frac{r y^*}{k}\right) z^*\right. \right. \\{} & {} \left. \left. +\frac{m_2 y^* {z^*}^2}{a_2^2+{y^*}^2}-\frac{2 a_2^2 m_2 y^* {z^*}^2}{\left( a_2^2+{y^*}^2\right) ^2}\right) +2 d^2 y^* k_3\right] \\ {\mathcal {V}}_1={} & {} k_1\left( \frac{2a_{11}}{x^*}+2a_{11}\tau _1+a_{12}\tau _1 +a_{13}\tau _1+a_{11}a_{12}\tau _2\right) \\{} & {} +k_4\left( \frac{a_{22}\tau _1}{2}+\frac{a_{23}\tau _1}{2}\right) \\{} & {} +k_6\left( \frac{a_{31}}{x^*}+a_{31}\tau _1+\frac{ba_{31}\tau _2}{2} +\frac{a_{32}\tau _1}{2}+\frac{a_{33}\tau _1}{2}\right) ,\\ {\mathcal {V}}_2={} & {} k_1\left( a_{12}\tau _1+a_{11}a_{12}\tau _2 +2a_{12}^2\tau _2+a_{13}a_{12}\tau _2\right) \\{} & {} +k_2\frac{2a_{22}}{y^*}+k_4\left( \frac{a_{12}}{y^*} +\frac{a_{22}\tau _1}{2}+ba_{22}\tau _2+\frac{ba_{23}\tau _2}{2}\right) \\{} & {} +k_5\frac{a_{32}}{y^*} +k_6\left( \frac{a_{32}\tau _1}{2}\right. \\{} & {} \left. +\frac{ba_{31}\tau _2}{2}+ba_{32}\tau _2 +\frac{ba_{33}\tau _2}{2}\right) ,\\ {\mathcal {V}}_3={} & {} k_1\left( a_{13}\tau _1+a_{12}a_{13}\tau _2\right) +k_3\frac{2a_{33}}{z^*} +k_4\left( \frac{a_{23}\tau _1}{2}+\frac{ba_{23}\tau _2}{2}\right) \\{} & {} +k_5\frac{a_{23}}{z^*} +k_6\left( \frac{a_{13}}{z^*}+\frac{a_{33}\tau _1}{2}\right. \\{} & {} \left. +\frac{ba_{33}\tau _2}{2}\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, R.R., Maitra, S. Dynamics of stability, bifurcation and control for a commensal symbiosis model. Int. J. Dynam. Control (2024). https://doi.org/10.1007/s40435-023-01367-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40435-023-01367-3

Keywords

Navigation