Skip to main content
Log in

Mass sensing based on nonlinear intermodal coupling via 2:1 internal resonance of electrostatically actuated clamped–clamped microbeams

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Over recent decades, the application of internal resonance-based nonlinear intermodal coupling in electromechanical resonators has shown promise for enhancing functionality and performance. This paper proposes a novel mass sensor by exploiting the frequency shift in the second mode response of an electrostatically actuated clamped–clamped microbeam. The sensor achieves this through intermodal coupling via a 2:1 internal resonance, with external excitation applied to the third mode. Through a systematic investigation using a reduced-order model and finite element analysis, we analyze the influence of adsorbed mass and its position on modal frequencies and establish a feasibility range for the resonance condition. Subsequently, we investigate the influence of adsorbed mass on the dynamics of coupled modes, determining the frequency shift in the second mode response for sensitivity estimation. The influence of critical parameters such as excitation amplitude, damping, frequency gap in the resonance relation, and mass positions on sensitivity is also investigated. Notably, sensitivity exhibits a non-monotonic behavior concerning the non-dimensional parameter (\(\alpha _1\)) and reaches maximum values at higher \(\alpha _1\). The sensor demonstrates a twentyfold increase in sensitivity compared to the fundamental mode. Practical viability is confirmed by evaluating mass sensitivity for experimentally viable beams made of Polysilicon and GaAs. This study presents a comprehensive and systematic methodology for exploring a mass sensor based on modal interaction in electrostatically actuated microbeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. Phys Rep 503:115–163

    Article  Google Scholar 

  2. Hajjaj AZ, Hafiz MA, Younis MI (2017) Mode coupling and nonlinear resonances of MEMS arch resonators for bandpass filters. Sci Rep 7:1–7

    Article  Google Scholar 

  3. Kumar P, Pawaskar DN, Inamdar MM (2023) Investigation of a bandpass filter based on nonlinear modal coupling via 2:1 internal resonance of electrostatically actuated clamped-guided microbeams. J Vib Eng Technol 1–14

  4. Peng JS, Yang L, Luo GB, Yang J (2014) Nonlinear electro-dynamic analysis of micro-actuators: effect of material nonlinearity. Appl Math Model 38:2781–2790

    Article  MathSciNet  MATH  Google Scholar 

  5. Bu L, Arroyo E, Seshia AA (2021) Frequency combs: a new mechanism for MEMS vibration energy harvesters. In: 21st international conference on solid-state sensors, actuators and microsystems (Transducers), pp 136–139

  6. Fanget S, Hentz S, Puget P, Arcamone J, Matheron M, Colinet E, Andreucci P, Duraffourg L, Meyers Ed, Roukes ML (2011) Gas sensors based on gravimetric detection - a review. Sens Actuators B Chem 160:804–821

    Article  Google Scholar 

  7. Zhao C, Montaseri MH, Wood GS, Pu SH, Seshia AA, Kraft M (2016) A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sens Actuators A 249:93–111

    Article  Google Scholar 

  8. Gau JJ, Lan EH, Dunn B, Ho CM, Woo JCS (2001) A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers. Biosens Bioelectron 16:745–755

    Article  Google Scholar 

  9. Sungkanak U, Sappat A, Wisitsoraat A, Promptmas C, Tuantranont A (2010) Ultrasensitive detection of Vibrio cholerae O1 using microcantilever-based biosensor with dynamic force microscopy. Biosens Bioelectron 26:784–789

    Article  Google Scholar 

  10. Urbiztondo MA, Peralta A, Pellejero I, Sesé J, Pina MP, Dufour I, Santamaría J (2012) Detection of organic vapours with Si cantilevers coated with inorganic (zeolites) or organic (polymer) layers. Sens Actuators B Chem 171–172:822–831

    Article  Google Scholar 

  11. Hwang Y, Sohn H, Phan A, Yaghi OM, Candler RN (2013) Dielectrophoresis-assembled zeolitic imidazolate framework nanoparticle-coupled resonators for highly sensitive and selective gas detection. Nano Lett 13:5271–5276

    Article  Google Scholar 

  12. Yamagiwa H, Sato S, Fukawa T, Ikehara T, Maeda R, Mihara T, Kimura M (2014) Detection of volatile organic compounds by weight-detectable sensors coated with metal-organic frameworks. Sci Rep 4:1–6

    Article  Google Scholar 

  13. Hajjaj AZ, Jaber N, Ilyas S, Alfosail FK, Younis MI (2020) Linear and nonlinear dynamics of micro and nano-resonators: review of recent advances. Int J Non-Linear Mech 119:103328

    Article  Google Scholar 

  14. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Güntherodt HJ, Gerber Ch, Gimzewski JK (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318

    Article  Google Scholar 

  15. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19:856–860

    Article  Google Scholar 

  16. Dohn S, Sandberg R, Svendsen W, Boisen A (2005) Enhanced functionality of cantilever based mass sensors using higher modes. Appl Phys Lett 86:1–3

    Article  Google Scholar 

  17. Li M, Tang HX, Roukes ML (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol 2:114–120

    Article  Google Scholar 

  18. Pujol-Vila F, Villa R, Alvarez M (2020) Nanomechanical sensors as a tool for bacteria detection and antibiotic susceptibility testing. Front Mech Eng 6:44

    Article  Google Scholar 

  19. Ono T, Esashi M (2004) Mass sensing with resonating ultra-thin silicon beams detected by a double-beam laser Doppler vibrometer. Meas Sci Technol 15:1977–1981

    Article  Google Scholar 

  20. Baek IB, Byun S, Lee BK, Ryu JH, Kim Y, Yoon YS, Jang WI, Lee S, Yu HY (2017) Attogram mass sensing based on silicon microbeam resonators. Sci Rep 7:1–10

    Article  Google Scholar 

  21. Yang YT, Callegari C, Feng XL, Ekinci KL, Roukes ML (2006) Zeptogram-scale nanomechanical mass sensing. Nano Lett 6:583–586

    Article  Google Scholar 

  22. Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A (2012) A nanomechanical mass sensor with yoctogram resolution. Nat Nanotechnol 7:301–304

    Article  Google Scholar 

  23. Sage E, Sansa M, Fostner S, Defoort M, Gély M, Naik AK, Morel R, Duraffourg L, Roukes ML, Alava T, Jourdan G, Colinet E, Masselon C, Brenac A, Hentz S (2018) Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Nat Commun 9:1–8

    Article  Google Scholar 

  24. Lochon F, Dufour I, Rebière D (2005) An alternative solution to improve sensitivity of resonant microcantilever chemical sensors: comparison between using high-order modes and reducing dimensions. Sens Actuators B Chem 108:979–985

    Article  Google Scholar 

  25. Jin D, Li X, Liu J, Zuo G, Wang Y, Liu M, Yu H (2006) High-mode resonant piezoresistive cantilever sensors for tens-femtogram resoluble mass sensing in air. J Micromech Microeng 16:1017–1023

    Article  Google Scholar 

  26. Gao R, Huang Y, Wen X, Zhao J, Liu S (2017) Method to further improve sensitivity for high-order vibration mode mass sensors with stepped cantilevers. IEEE Sens J 17:4405–4411

    Article  Google Scholar 

  27. Okada M, Nagasaki H, Tamano A, Niki K, Tanigawa H, Suzuki K (2009) Silicon beam resonator utilizing the third-order bending mode. Jpn J Appl Phys 48:06FK03

    Article  Google Scholar 

  28. Jaber N, Ramini A, Carreno AAA, Younis MI (2016) Higher order modes excitation of electrostatically actuated clamped-clamped microbeams: experimental and analytical investigation. J Micromech Microeng 26:025008

    Article  Google Scholar 

  29. Zhang WM, Yan H, Peng ZK, Meng G (2014) Electrostatic pull-in instability in MEMS/NEMS: a review. Sens Actuators A 214:187–218

    Article  Google Scholar 

  30. Khaniki HB, Ghayesh MH, Amabili M (2021) A review on the statics and dynamics of electrically actuated nano and micro structures. Int J Non-Linear Mech 129:103658

    Article  Google Scholar 

  31. Jaibir S, Nagendra K, Amitava D (2012) Fabrication of low pull-in voltage RF MEMS switches on glass substrate in recessed CPW configuration for V-band application. J Micromech Microeng 22:025001

    Article  Google Scholar 

  32. Rocha LA, Dias RA, Cretu E, Mol L, Wolffenbuttel RF (2011) Auto-calibration of capacitive MEMS accelerometers based on pull-in voltage. Microsyst Technol 17:429–436

    Article  Google Scholar 

  33. Grade JD, Jerman H, Kenny TW (2003) Design of large deflection electrostatic actuators. J Microelectromech Syst 12:335–343

    Article  Google Scholar 

  34. Khater ME, Al-Ghamdi M, Park S, Stewart KME, Abdel-Rahman EM, Penlidis A, Nayfeh AH, Abdel-Aziz AKS, Basha M (2014) Binary MEMS gas sensors. J Micromech Microeng 24:065007

    Article  Google Scholar 

  35. Bouchaala A, Jaber N, Shekhah O, Chernikova V, Eddaoudi M, Younis MI (2016) A smart microelectromechanical sensor and switch triggered by gas. Appl Phys Lett 109:013502

    Article  Google Scholar 

  36. Jaber N, Ilyas S, Shekhah O, Eddaoudi M, Younis MI (2018) Resonant Gas Sensor and Switch Operating in Air with Metal-Organic Frameworks Coating. J Microelectromech Syst 27:156–163

    Article  Google Scholar 

  37. Al-Ghamdi MS, Khater ME, Stewart KME, Alneamy A, Abdel-Rahman EM, Penlidis A (2019) Dynamic bifurcation MEMS gas sensors. J Micromech Microeng 29:015005

    Article  Google Scholar 

  38. Kumar V, Boley JW, Yang Y, Ekowaluyo H, Miller JK, Chiu GTC, Rhoads JF (2011) Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Appl Phys Lett 98:153510

    Article  Google Scholar 

  39. Nguyen VN, Baguet S, Lamarque CH, Dufour R (2015) Bifurcation-based micro-/nanoelectromechanical mass detection. Nonlinear Dyn 79:647–662

    Article  Google Scholar 

  40. Bouchaala A, Jaber N, Yassine O, Shekhah O, Chernikova V, Eddaoudi M, Younis MI (2016) Nonlinear-based MEMS sensors and active switches for gas detection. Sensors 16:758

    Article  Google Scholar 

  41. Hanay MS, Kelber S, Naik AK, Chi D, Hentz S, Bullard EC, Colinet E, Duraffourg L, Roukes ML (2012) Single-protein nanomechanical mass spectrometry in real time. Nat Nanotechnol 7:602–608

    Article  Google Scholar 

  42. Hanay MS, Kelber SI, O’Connell CD, Mulvaney P, Sader JE, Roukes ML (2015) Inertial imaging with nanomechanical systems. Nat Nanotechnol 10:339–344

    Article  Google Scholar 

  43. Ohta R, Okamoto H, Yamaguchi H (2017) Feedback control of multiple mechanical modes in coupled micromechanical resonators. Appl Phys Lett 110:053106

    Article  Google Scholar 

  44. Yamaguchi H (2017) GaAs-based micro/nanomechanical resonators. Semicond Sci Technol 32:103003

    Article  Google Scholar 

  45. Asadi K, Yu J, Cho H (2018) Nonlinear couplings and energy transfers in micro-and nano-mechanical resonators: intermodal coupling, internal resonance and synchronization. Philos Trans R Soc A Math Phys Eng Sci 376:20170141

    Article  Google Scholar 

  46. Hajjaj AZ, Jaber N, Ilyas S, Alfosail FK, Younis MI (2020) Linear and nonlinear dynamics of micro and nano-resonators: review of recent advances. Int J Non-Linear Mech 119:103328

    Article  Google Scholar 

  47. Kumar P, Muralidharan B, Pawaskar DN, Inamdar MM (2022) Investigation of phonon lasing like auto-parametric instability between \(1-\)D flexural modes of electrostatically actuated microbeams. Int J Mech Sci 220:107135

    Article  Google Scholar 

  48. Zhang T, Wei X, Jiang Z, Cui T (2018) Sensitivity enhancement of a resonant mass sensor based on internal resonance. Appl Phys Lett 113:1–6

    Article  Google Scholar 

  49. Li L, Zhang YP, Ma CC, Liu CC, Peng B (2020) Anti-symmetric mode vibration of electrostatically actuated clamped-clamped microbeams for mass sensing. Micromachines 11:12

    Google Scholar 

  50. Li L, Zhang W, Wang J, Hu K, Peng B, Shao M (2020) Bifurcation behavior for mass detection in nonlinear electrostatically coupled resonators. Int J Non-Linear Mech 119:103366

    Article  Google Scholar 

  51. Li L, Liu H, Shao M, Ma C (2021) A novel frequency stabilization approach for mass detection in nonlinear mechanically coupled resonant sensors. Micromachines 12:1–20

    Google Scholar 

  52. Kumar P, Inamdar MM, Pawaskar DN (2020) Characterisation of the internal resonances of a clamped-clamped beam MEMS resonator. Microsyst Technol 26:1987–2003

    Article  Google Scholar 

  53. Noori N (2018) Analysis of 2:1 internal resonance in mems applications. Master’s thesis, Applied Sciences: School of Mechatronic Systems Engineering

  54. Bouchaala A, Nayfeh AH, Younis MI (2017) Analytical study of the frequency shifts of micro and nano clamped-clamped beam resonators due to an added mass. Meccanica 52:333–348

    Article  MATH  Google Scholar 

  55. Li L, Zhang Q, Wang W, Han J (2017) Nonlinear coupled vibration of electrostatically actuated clamped-clamped microbeams under higher-order modes excitation. Nonlinear Dyn 90:1593–1606

    Article  Google Scholar 

  56. Kumar P, Inamdar MM, Pawaskar DN (2020) Investigation of 3:1 internal resonance of electrostatically actuated microbeams with flexible supports. In: International design engineering technical conferences and computers and information in engineering conference, vol 83907, p V001T01A006

  57. Kumar P, Pawaskar DN, Inamdar MM (2022) Investigating internal resonances and 3:1 modal interaction in an electrostatically actuated clamped-hinged microbeam. Meccanica 57:143–163

  58. Hajjaj AZ, Alcheikh N, Ramini A, Hafiz M, Younis MI (2016) Highly tunable electrothermally and electrostatically actuated resonators. J Microelectromech Syst 25:440–449

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Indian Institute of Technology Bombay for providing all the research facilities to conduct this research.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PK did conceptualization, visualization, methodology, investigation, software, validation, and writing. DNP done visualization, supervision, and writing, and MMI was involved in conceptualization, visualization, supervision, and writing.

Corresponding author

Correspondence to Praveen Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix A

Appendix A

1.1 A. 1 Coefficient of quadratic terms

$$\begin{aligned} \alpha _{n1}=\Gamma _{22n}, \quad \alpha _{n2}=\Gamma _{23n}+\Gamma _{32n}, \quad \alpha _{n3}=\Gamma _{33n} \end{aligned}$$

where

$$\begin{aligned} \Gamma _{ijn}=\left[ \alpha _1 \int _{0}^{1} w_{\mathrm{{dc}}}^{\prime \prime } \phi _n dx \int _{0}^{1} \phi _i \phi _j dx +\alpha _1 \int _{0}^{1}\phi _i^{\prime \prime } \right. \nonumber \\ \phi _n dx \left. \int _{0}^{1} 2 \phi _j^{\prime } w_{\mathrm{{dc}}}^{\prime } dx +3 \alpha _2 V_{\mathrm{{dc}}}^2 \int _{0}^{1}\frac{\phi _i \phi _j \phi _n}{(1-w_{\mathrm{{dc}}})^4}dx\right] \end{aligned}$$

for \(i, j, n=2, 3\).

1.2 A. 2 Coefficient of cubic terms

$$\begin{aligned} \alpha _{n11}=\Gamma _{222n}, \quad \alpha _{n12}=\Gamma _{223n}+\Gamma _{232n}+\Gamma _{322n}, \\ \alpha _{n13}=\Gamma _{233n}+\Gamma _{323n}+\Gamma _{332n}, \quad \alpha _{n14}=\Gamma _{333n}, \end{aligned}$$

where

$$\begin{aligned} \Gamma _{ijkn}=&\left[ \alpha _1 \int _{0}^{1}\phi _i^{\prime \prime }\phi _n dx \int _{0}^{1}\phi _j^{\prime } \phi _k^{\prime }dx \right. \\ {}&\left. + 4 \alpha _2 V_{\mathrm{{dc}}}^2 \int _{0}^{1}\frac{\phi _i \phi _j \phi _k \phi _n}{(1-w_{\mathrm{{dc}}})^5} dx \right] \\ \end{aligned}$$

for ijk and n \(=\) 2, 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Pawaskar, D.N. & Inamdar, M.M. Mass sensing based on nonlinear intermodal coupling via 2:1 internal resonance of electrostatically actuated clamped–clamped microbeams. Int. J. Dynam. Control (2023). https://doi.org/10.1007/s40435-023-01355-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40435-023-01355-7

Keywords

Navigation