Skip to main content
Log in

Multivariable grasping force control of myoelectric multi-fingered hand prosthesis

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This article presents a novel force control strategy to manipulate and grasp objects with multi-fingered hand prostheses. For this purpose, we develop an approach based on the multivariable state-space technique, which uses the Kalman filter and the model predictive control for real-time optimal grasping force control and slippage prevention. We utilized a low-cost prosthetic hand and the least-squares algorithm to identify the multiple-input and single-output state-space force model. The Kalman filter design uses this force model and the fusion of the prostheses’ force sensors to improve the global grasping force estimation by the redundancy effect. Then, we use the model predictive control to exploit the optimal grasping force control and perform anthropomorphic movements with the prosthesis. The results have demonstrated the feasibility of the approach to track force references in real time and provide force control with everyday objects. The performance of the proposed approach was superior to the results obtained with the decentralized PID control used in the state-of-the-art. The results confirmed that the proposed grasping force method is simple, efficient, and can be easily embedded in micro-controlled systems to be applied into commercially available prostheses as well as into low-cost prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R (2008) Estimating the prevalence of limb loss in the united states: 2005 to 2050. Arch Phys Med Rehabil 89(3):422–429

    Article  Google Scholar 

  2. Scheme E, Englehart K (2011) Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehab Res Develop 48(6):643–659

    Article  Google Scholar 

  3. Igual C, Pardo LA, Hahne JM, Igual J (2019) Myoelectric control for upper limb prostheses. Electronics 8(11):1244

    Article  Google Scholar 

  4. Systems V (2020) Vincent evolution 3 URL https://vincentsystems.de

  5. TouchSolutions O (2020) i-limb access URL https://www.ossur.com/en-us/prosthetics/hands

  6. Ottobock (2020) Bebionic hand URL https://www.ottobockus.com

  7. Sono TSP, Menegaldo LL (2009) Myoelectric hand prosthesis force control through servo motor current feedback. Artif Organs 33(10):871–876

    Article  Google Scholar 

  8. Dillingham TR, Pezzin LE, MacKenzie EJ (2002) Limb amputation and limb deficiency: epidemiology and recent trends in the united states. South Med J 95(8):875–884

    Google Scholar 

  9. Belter JT, Segil JL, SM B (2013) Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J Rehabil Res Dev, 50(5): 599

  10. Carrozza MC, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C (2006) Design of a cybernetic hand for perception and action. Biol Cybern 95(6):629

    Article  MATH  Google Scholar 

  11. Engeberg ED, Meek S (2012) Enhanced visual feedback for slip prevention with a prosthetic hand. Prosthet Orthot Int 36(4):423–429

    Article  Google Scholar 

  12. Barone R, Ciancio AL, Romeo RA, Davalli A, Sacchetti R, Guglielmelli E, Zollo L (2016) Multilevel control of an anthropomorphic prosthetic hand for grasp and slip prevention. Adv Mech Eng 8(9):1687814016665

    Article  Google Scholar 

  13. Villani L, Ficuciello F, Lippiello V, Palli G, Ruggiero F, Siciliano B (2012) Grasping and control of multi-fingered hands. Springer, London, pp 219–266

    Google Scholar 

  14. Wang X, Liu Y, Gao J (IEEE, 2016) In: 2016 IEEE international conference on mechatronics and automation pp. 2134–2138

  15. Naidu D, Chen C (2011) Control strategies for smart prosthetic hand technology: an overview, book chapter 14, to appear in a book titled, distributed diagnosis and home healthcare (d2h2)

  16. Cordella F, Gentile C, Zollo L, Barone R, Sacchetti R, Davalli A, Siciliano B, Guglielmelli E (2016) (IEEE) In: 2016 IEEE international conference on robotics and automation (ICRA), pp. 3524–3529

  17. Deng Z, Jonetzko Y, Zhang L, Zhang J (2020) Grasping force control of multi-fingered robotic hands through tactile sensing for object stabilization. Sensors 20(4):1050

    Article  Google Scholar 

  18. Zollo L, Roccella S, Guglielmelli E, Carrozza MC, Dario P (2007) Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Trans Mechatron 12(4):418–429

    Article  Google Scholar 

  19. Pasluosta CF, Chiu AW (2015) Modulation of grasping force in prosthetic hands using neural network-based predictive control. Springer, London, pp 179–194

    Google Scholar 

  20. Potluri C, Anugolu M, Naidu DS, Schoen MP, Chiu SC (2015) Real-time embedded frame work for semg skeletal muscle force estimation and lqg control algorithms for smart upper extremity prostheses. Eng Appl Artif Intell 46:67–81

    Article  Google Scholar 

  21. Li C, Deng X, Li Q (Atlantis Press, 2016) In: 2016 international conference on advanced electronic science and technology (AEST 2016)

  22. Engeberg ED, Meek SG (2011) Adaptive sliding mode control for prosthetic hands to simultaneously prevent slip and minimize deformation of grasped objects. IEEE/ASME Trans Mechatron 18(1):376–385

    Article  Google Scholar 

  23. Liu Z, Jiang L, Yang B (IEEE, 2019) In: 2019 IEEE international conference on robotics and biomimetics (ROBIO),pp. 1356–1361

  24. Prattichizzo D, Malvezzi M, Gabiccini M, Bicchi A (2012) On the manipulability ellipsoids of underactuated robotic hands with compliance. Robot Auton Syst 60(3):337–346

    Article  Google Scholar 

  25. Hudgins B, Parker P, Scott RN (1993) A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40(1):82–94

    Article  Google Scholar 

  26. Gross R (2017) Humanoid robotic hand. URL https://www.thingiverse.com/thing:2269115

  27. Valle-Lopera DA, Castaño-Franco AF, Gallego-Londoño J, Hernández-Valdivieso AM (2017) Test and fabrication of piezoresistive sensors for contact pressure measurement. Revista Facultad de Ingeniería Universidad de Antioquia 82:47–52

    Article  Google Scholar 

  28. Lin X, Seet BC (2015) A linear wide-range textile pressure sensor integrally embedded in regular fabric. IEEE Sens J 15(10):5384–5385

    Article  Google Scholar 

  29. Malik MB (2004) State-space recursive least-squares: part i. Signal Process 84(9):1709–1718

    Article  MATH  Google Scholar 

  30. Vicario F (2014) Okid as a general approach to linear and bilinear system identification. Ph.D. thesis. Columbia university

  31. Silveira A, Silva A, Coelho A, Real J, Silva O (2020) Design and real-time implementation of a wireless autopilot using multivariable predictive generalized minimum variance control in the state-space. Aerosp Sci Technol 105(106):053

    Google Scholar 

  32. Goodwin GC, Sin KS (1984) Adaptive filtering prediction and control, pp. 649–654

  33. Lewis FL, Xie L, Popa D (CRC press, 2017) Optimal and robust estimation: with an introduction to stochastic control theory

  34. Camacho EF, Alba CB (2013) Model predictive control. Springer Science & Business Media, Heidelberg

    Google Scholar 

  35. Wang L (2009) Model predictive control system design and implementation using matlab®. Springer Science & Business Media, London

    Google Scholar 

  36. Kwong W (2005) Introdução ao controle preditivo com matlab

  37. Pasluosta C, Tims H, Chiu A et al (2009) Slippage sensory feedback and nmiscar force control system for a low-cost prosthetic hand. Am. J. Biomed. Sci 1(4):295–302

    Article  Google Scholar 

  38. Su Z, Hausman K, Chebotar Y, Molchanov A, Loeb G.E, Sukhatme G.S, Schaal S (IEEE, 2015) In: 2015 IEEE-RAS 15th international conference on humanoid robots (Humanoids), pp. 297–303

  39. Dutra B, Silveira A (2021) Pereira a grasping force estimation using state-space model and Kalman filter. Biomed Signal Process Control 70(103):036. https://doi.org/10.1016/j.bspc.2021.103036

    Article  Google Scholar 

  40. Skogestad S, Postlethwaite I (2005) Multivariable feedback control: analysis and design. John Wiley, New Jersey

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial support of the Brazilian National Council for Scientific and Technological Development (CNPq) under grant 142415/2018-9, the project 408559/2016-0, and the financial support of PROPESP/UFPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Gomes Dutra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra, B.G., Silveira, A.d.S. Multivariable grasping force control of myoelectric multi-fingered hand prosthesis. Int. J. Dynam. Control 11, 3145–3158 (2023). https://doi.org/10.1007/s40435-023-01130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01130-8

Keywords

Navigation