Skip to main content
Log in

Carleman framework-based filtering for a nonlinear phase tracking problem

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The notion of phase tracking has found its applications in signal processing, navigation system, radar and communication systems. The nonlinear phase tracking filtering is attributed to nonlinear noisy observables that combines dynamics and observables. The precised phase angle estimation is always a potential task in practical problems. With this motivation, in this paper, we propose a new estimation method, which is a relatively very scarce, but exploits an appealing framework because of its concerning algorithmic convenience stemming from the bilinearizability. The novelty of the method is the Carleman linearization-based filtering. The Carleman linearization-based phase tracking filtering is contrasted with the two-benchmark filters, the EKF and a second-order Gaussian filtering. This paper develops a phase tracking filtering algorithm in the Carleman framework for the case, where the process noise is the OU process and measurement system noise is the Wiener process. Notably, this paper develops mathematics of stochastic phase tracking problem in the Carleman framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Curran JT (2015) Enhancing weak-signal carrier phase tracking in GNSS receivers. Int J Navig Obs. https://doi.org/10.1155/2015/295029

    Article  Google Scholar 

  2. Willsky A (1974) Fourier series and estimation on the circle with applications to synchronous communication-I: analysis. IEEE Trans Inf Theory 20(5):577–583. https://doi.org/10.1109/TIT.1974.1055280

    Article  MATH  Google Scholar 

  3. Willsky A (1974) Fourier series and estimation on the circle with applications to synchronous communication-II: implementation. IEEE Trans Inf Theory 20(5):584–590. https://doi.org/10.1109/TIT.1974.1055281

    Article  MATH  Google Scholar 

  4. Chen S, Gao Y (2017) Improvement of carrier phase tracking based on a joint vector architecture. Int J Aerosp Eng. https://doi.org/10.1155/2017/9682875

    Article  Google Scholar 

  5. Schuss Z (2012) Nonlinear filtering and optimal phase tracking, applied mathematical sciences. Springer, New York

    Book  MATH  Google Scholar 

  6. Kerr TH (1991) Streamlining measurement iteration for EKF target tracking. IEEE Trans Aerosp Electron Syst 27(2):408–421. https://doi.org/10.1109/7.78314

    Article  Google Scholar 

  7. Bhatt DS, Sharma SN (2020) Carleman linearization based estimation technique for a noise influenced electronic circuit. Electron Lett 56(12):589–592. https://doi.org/10.1049/el.2019.4197

    Article  Google Scholar 

  8. Sharma SN, Parthasarathy H, Gupta JRP (2006) Third-order approximate Kushner filter for a non-linear dynamical system. Int J Control 79(9):1096–1106. https://doi.org/10.1080/00207170600800124

    Article  MATH  Google Scholar 

  9. Rugh WL (1980) Nonlinear system theory: the Volterra-Wiener approach. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  10. Kawalski K, Steeb WH (1991) Nonlinear dynamical systems and Carleman linearization. World Scientific, Singapore

    Book  Google Scholar 

  11. Kloden PE, Platen E (1999) Numerical solution of stochastic differential equations. Springer-Verlag, Berlin

    Google Scholar 

  12. Li F, Shi P, Wu L (2017) Control and Filtering for Semi-Markovian Jump Systems. Springer, Berlin

  13. Carleman T (1932) Application de la théorie des équations intégrales linéaires aux systémes d’ équations différentialles non Linéaires (in French). Acta Math 59:63–87

    Article  MATH  Google Scholar 

  14. Brewer JW (1978) Kronecker products and matrix calculus in system theory. IEEE Trans Circuits Syst 25(9):772–781. https://doi.org/10.1109/TCS.1978.1084534

    Article  MATH  Google Scholar 

  15. Karatzas I, Shreve SE (1988) Brownian motion and stochastic calculus. Springer, New York

    Book  MATH  Google Scholar 

  16. Pugachev VS, Sinitsyn IN (1977) Stochastic Differential Systems (Analysis and Filtering), John-Wiley and Sons, New York and Chichester

  17. Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press, New York and London

    MATH  Google Scholar 

  18. Huber M (2015) Nonlinear Gaussian Filtering: Theory, Algorithms, and Applications, Habilitation thesis

  19. Hirpara RH, Sharma SN (2013) On a phase tracking problem: nonlinear filtering approaches. In: 3rd International Conference on Systems and Control, Algiers, pp 596–601. https://doi.org/10.1109/ICoSC.2013.6750922

Download references

Acknowledgements

The authors are grateful to the anonymous qualified reviewers for commenting on the initial version of the paper that has improved the contents of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant G. Medewar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Consider the Carleman linearized Itô bilinear SDE,

$$ d\xi_{t} = (A_{0t} + A_{t} \xi_{t} )dt + D_{t} \xi_{t} dW_{t} + G_{t} dW_{t} , $$

We wish to calculate the expectation of the term \(E(d\xi_{t} d\xi_{t}^{T} ).\) The term signifies the diffusion coefficient term in the variance evolution of the filtering. Thus,

$$ d\xi_{t}^{T} = (D_{t} \xi_{t} dW_{t} )^{T} + (G_{t} dW)_{t}^{T} = dW_{t}^{T} \xi_{t}^{T} D_{t}^{T} + dW_{t}^{T} G_{t}^{T} , $$

and

$$ \begin{aligned} E(d\xi_{t} d\xi_{t}^{T} ) & = \;E(D_{t} \xi_{t} dW_{t} (D_{t} \xi_{t} dW_{t} )^{T} + D_{t} \xi_{t} dW_{t} dW_{t}^{T} G_{t}^{T}\\ &\quad + G_{t} dW_{t} (D_{t} \xi_{t} dW_{t} )^{T} + G_{t} dW_{t} dW_{t}^{T} G_{t}^{T} ) \\ & = \;E(D_{t} \xi_{t} dW_{t} dW_{t}^{T} \xi_{t}^{T} D_{t}^{T} + D_{t} \xi_{t} dW_{t} dW_{t}^{T} G_{t}^{T}\\ & + G_{t} dW_{t} dW_{t}^{T} \xi_{t}^{T} D_{t}^{T} + G_{t} dW_{t} dW_{t}^{T} G_{t}^{T} ) \\ \end{aligned} $$

After applying the Itô differential rule, we have

$$ \begin{aligned} Ed\xi_{t} d\xi_{t}^{T} & = \;E(D_{t} \xi_{t} I\xi_{t}^{T} D_{t}^{T} + D_{t} \xi_{t} IG_{t}^{T} + G_{t} I\xi_{t}^{T} D_{t}^{T}\\ & \quad + G_{t} IG_{t}^{T} )dt \\ & = \;E(D_{t} \xi_{t} \xi_{t}^{T} D_{t}^{T} + D_{t} \xi_{t} G_{t}^{T} + G_{t} \xi_{t}^{T} D_{t}^{T}\\ & \quad + G_{t} G_{t}^{T} )dt \\ & = \;(D_{t} E\xi_{t} \xi_{t}^{T} D_{t}^{T} + D_{t} E\xi_{t} G_{t}^{T} + G_{t} E\xi_{t}^{T} D_{t}^{T}\\ & \quad + G_{t} G_{t}^{T} )dt \\ \, &= \;(D_{t} V_{t} D_{t}^{T} + D_{t} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{t} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{t}^{T} D_{t}^{T} + D_{t} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{t} G_{t}^{T}\\ & \quad + G_{t} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{t}^{T} D_{t}^{T} + G_{t} G_{t}^{T} )dt \\ \end{aligned} $$

where \(\overbrace {{\xi_{t} \xi_{t}^{T} }}^{\Lambda } = E(\xi_{t} \xi_{t}^{T} \left| {t_{0} } \right.,\xi_{{t_{0} }} ) = V_{t} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{t} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{t}^{T} .\) Recall the Riccati equation in the linear filtering. The generalization of the Riccati equation is natural because of the bilinearity. The ‘generalized’ Riccati equation combines the Riccati equation and the corrections to the diffusion coefficient, i.e. the terms associated with the coefficient of the term \(dt\) of the right-hand side of the above equation. Thus, the variance evolution of the Carleman linearized SDE is a generalized Riccati equation, i.e.

$$\begin{aligned} dV_{t} & = (V_{t} A_{t}^{T} + A_{t} V_{t} + G_{t} G_{t}^{T} + G_{t} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{t}^{T} D_{t}^{T}\\ & \quad + D_{t} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{t} G_{t}^{T} + \;D_{t} V_{t} D_{t}^{T} + D_{t} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{t} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{t}^{T} - V_{t} C_{t}^{T} r^{ - 2} C_{t} V_{t} )dt.\end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medewar, P.G., Sharma, S.N. & Patel, H.G. Carleman framework-based filtering for a nonlinear phase tracking problem. Int. J. Dynam. Control 11, 194–204 (2023). https://doi.org/10.1007/s40435-022-00937-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-00937-1

Keywords

Navigation