Skip to main content
Log in

Adaptive robust nonlinear control of spacecraft formation flying: a novel disturbance observer-based control approach

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper proposes a novel nonlinear disturbance observer (NDO)-based control approach for spacecraft formation flying (SFF) subject to non-vanishing disturbances. The external disturbance from the space environment and modeled/unmodeled uncertainties are aggregated as a lumped unknown external disturbance. A novel NDO is designed to provide an estimation of unknown external disturbance. The adaptive robust control approach is combined with the NDO-based control approach to get a composite adaptive controller. In the resulting controller, the disturbance estimation is utilized as feed-forward to attenuate the disturbance effects. The asymptotic stability of the proposed composite adaptive controller is proved using the Lyapunov theorem. In previous NDO-based controllers designed for nonlinear systems, either the time derivative of external disturbance is assumed to be equal to zero, or the knowledge of external disturbance upper-bound is required to be known. However, the proposed controller neither makes presumption on the magnitude of the disturbance nor its time derivatives. Furthermore, compared with some existing NDO-based controllers, the conditions of previous methods on the magnitudes of controller parameters are relaxed. Simulation results, along with comparisons, are included to verify the effectiveness of the proposed control scheme. Compared to the previous NDO-based control methods, the proposed method provides better tracking performance in the presence of external disturbances, besides relaxing the restrictions of previous NDO control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scharf DP, Keim JA, Hadaegh FY (2010) Flight-like ground demonstrations of precision maneuvers for spacecraft formations. Part I. IEEE Syst J 4:84–95. https://doi.org/10.1109/JSYST.2010.2042532

    Article  Google Scholar 

  2. D’Amico S, Ardaens JS, Larsson R (2012) Spaceborne autonomous formation-flying experiment on the PRISMA mission. J Guid Control Dyn 35:834–850. https://doi.org/10.2514/1.55638

    Article  Google Scholar 

  3. Di Mauro G, Lawn M, Bevilacqua R (2018) Survey on guidance navigation and control requirements for spacecraft formation-flying missions. J Guid Control Dyn 41:581–602

    Article  Google Scholar 

  4. Lee D (2018) Nonlinear disturbance observer-based robust control for spacecraft formation flying. Aerosp Sci Technol 76:82–90. https://doi.org/10.1016/j.ast.2018.01.027

    Article  Google Scholar 

  5. Mok SH, Choi YH, Bang HC (2010) Collision avoidance using linear quadratic control in satellite formation flying. Int J Aeronaut Space Sci 11:351–359. https://doi.org/10.5139/IJASS.2010.11.4.351

    Article  Google Scholar 

  6. Li J, Xi XN (2012) Fuel-optimal low-thrust reconfiguration of formation-flying satellites via homotopic approach. J Guid Control Dyn 35:1709–1717. https://doi.org/10.2514/1.57354

    Article  Google Scholar 

  7. Clohessy WH, Wiltshire RS (1960) Terminal guidance system for satellite rendezvous. J Aerospace Sci 27:653–658. https://doi.org/10.2514/8.8704

    Article  MATH  Google Scholar 

  8. Vaddi SS, Vadali SR, Alfriend KT (2003) Formation flying: accommodating nonlinearity and eccentricity perturbations. J Guid Control Dyn 26:214–223. https://doi.org/10.2514/2.5054

    Article  Google Scholar 

  9. Liu H, Li J, Hexi B (2006) Sliding mode control for low-thrust Earth-orbiting spacecraft formation maneuvering. Aerosp Sci Technol 10:636–643. https://doi.org/10.1016/j.ast.2006.04.008

    Article  MATH  Google Scholar 

  10. Sun R, Wang J, Zhang D, Shao X (2018) Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy. Adv Space Res 61:914–926

    Article  Google Scholar 

  11. Yi H, Liu M, Li M (2019) Event-triggered fault tolerant control for spacecraft formation attitude synchronization with limited data communication. Eur J Control 48:97–103

    Article  MathSciNet  Google Scholar 

  12. Lim HC, Bang H (2009) Adaptive control for satellite formation flying under thrust misalignment. Acta Astronaut 65:112–122. https://doi.org/10.1016/j.actaastro.2009.01.022

    Article  Google Scholar 

  13. Zhang Y, Sun J, Liang H, Li H (2018) Event-triggered adaptive tracking control for multiagent systems with unknown disturbances. IEEE Trans Cybernet 50:890–901

    Article  Google Scholar 

  14. Huang X, Yan Y (2017) Saturated backstepping control of underactuated spacecraft hovering for formation flights. IEEE Trans Aerosp Electron Syst 53:1988–2000

    Article  Google Scholar 

  15. De Queiroz MS, Kapila V, Yan Q (2000) Adaptive nonlinear control of multiple spacecraft formation flying. J Guid Control Dyn 23:385–390. https://doi.org/10.2514/2.4549

    Article  Google Scholar 

  16. Sun Y, Ma G, Chen L, Wang P (2018) Neural network-based distributed adaptive configuration containment control for satellite formations. Proc Inst Mech Eng Part G J Aerospace Eng 232:2349–2363

    Article  Google Scholar 

  17. Massari M, Bernelli-Zazzera F, Canavesi S (2012) Nonlinear control of formation flying with state constraints. J Guid Control Dyn 35:1919–1925. https://doi.org/10.2514/1.55590

    Article  Google Scholar 

  18. Li B, Qin K, Xiao B, Yang Y (2019) Finite-time extended state observer based fault tolerant output feedback control for attitude stabilization. ISA Trans 91:11–20

    Article  Google Scholar 

  19. Zhang J, Ye D, Biggs JD, Sun Z (2019) Finite-time relative orbit-attitude tracking control for multi-spacecraft with collision avoidance and changing network topologies. Adv Space Res 63:1161–1175

    Article  Google Scholar 

  20. Ni Q, Huang YY, Chen XQ (2017) Nonlinear control of spacecraft formation flying with disturbance rejection and collision avoidance. Chin Phys B 26:014502

    Article  Google Scholar 

  21. Yeh HH, Nelson E, Sparks A (2002) Nonlinear tracking control for satellite formations. J Guid Control Dyn 25:376–386. https://doi.org/10.2514/2.4892

    Article  Google Scholar 

  22. Hui L, Li J (2009) Terminal sliding mode control for spacecraft formation flying. IEEE Trans Aerosp Electron Syst 45:835–846. https://doi.org/10.1109/TAES.2009.5259168

    Article  Google Scholar 

  23. Lin X, Shi X, Li S, Nguang SK, Zhang L (2020) Nonsingular fast terminal adaptive neuro-sliding mode control for spacecraft formation flying systems. Complexity 20:15

    MATH  Google Scholar 

  24. Yang J, Chen WH, Li S (2011) Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory Appl 5:2053–2062. https://doi.org/10.1049/iet-cta.2010.0616

    Article  MathSciNet  Google Scholar 

  25. Homayounzade M, Alipour M (2019) Output feedback adaptive control of dynamically positioned surface vessels: A disturbance observer-based control approach. Int J Robot Autom. https://doi.org/10.2316/J.2019.206-5572

    Article  Google Scholar 

  26. Homayounzade M, Khademhosseini A (2019) Disturbance observer-based trajectory following control of robot manipulators. Int J Control Autom Syst 17:203–211. https://doi.org/10.1007/s12555-017-0544-x

    Article  Google Scholar 

  27. Lee K, Back J, Choy I (2014) Nonlinear disturbance observer based robust attitude tracking controller for quadrotor UAVs. Int J Control Autom Syst 12:1266–1275. https://doi.org/10.1007/s12555-014-0145-x

    Article  Google Scholar 

  28. Wang Z, Wu Z (2015) Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts. Nonlinear Dyn 81:257–264. https://doi.org/10.1007/s11071-015-1987-3

    Article  MathSciNet  MATH  Google Scholar 

  29. Ye D, Zhang J, Sun Z (2017) Extended state observer–based finite-time controller design for coupled spacecraft formation with actuator saturation. Adv Mech Eng. https://doi.org/10.1177/1687814017696413

    Article  Google Scholar 

  30. Li S, Yang J, Chen W-H, Chen X (2014) Disturbance observer-based control: methods and applications, 1st edn. CRC Press Inc., Boca Raton

    Google Scholar 

  31. Chen M, Yu J (2015) Disturbance observer-based adaptive sliding mode control for near-space vehicles. Nonlinear Dyn 82:1671–1682. https://doi.org/10.1007/s11071-015-2268-x

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu S, Liu Y, Wang N (2017) Nonlinear disturbance observer-based backstepping finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances. Nonlinear Dyn 88:465–476. https://doi.org/10.1007/s11071-016-3253-8

    Article  MATH  Google Scholar 

  33. Feng Y, Han F, Yu X (2016) Reply to comments on ‘chattering free full-order sliding-mode control’ [automatica 50 (2014) 1310–1314]. Automatica 72:255–256. https://doi.org/10.1016/j.automatica.2014.01.004

    Article  MathSciNet  Google Scholar 

  34. Chen M, Chen W-H (2010) Sliding mode control for a class of uncertain nonlinear system based on disturbance observer. Int J Adapt Control Signal Process 24:51–64. https://doi.org/10.1002/acs.1110

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang J, Li S, Yu X (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Industr Electron 60:160–169. https://doi.org/10.1109/TIE.2012.2183841

    Article  Google Scholar 

  36. Su J, Yang J, Li S (2014) Continuous finite-time anti-disturbance control for a class of uncertain nonlinear systems. Trans Inst Meas Control 36:300–311. https://doi.org/10.1177/0142331213499182

    Article  Google Scholar 

  37. Ginoya D, Shendge PD, Phadke SB (2014) Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans Ind Electron 61:1983–1992. https://doi.org/10.1109/TIE.2013.2271597

    Article  Google Scholar 

  38. Li S, Sun H, Yang J, Yu X (2015) Continuous finite-time output regulation for disturbed systems under mismatching condition. IEEE Trans Autom Control 60:277–282. https://doi.org/10.1109/TAC.2014.2324212

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang J, Li S, Su J, Yu X (2013) Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49:2287–2291. https://doi.org/10.1016/j.automatica.2013.03.026

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang J, Su J, Li S, Yu X (2014) High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans Industr Inf 10:604–614. https://doi.org/10.1109/TII.2013.2279232

    Article  Google Scholar 

  41. Rabiee H, Ataei M, Ekramian M (2019) Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems. Automatica. https://doi.org/10.1016/j.automatica.2019.108515

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not‐for‐profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamadreza Homayounzade.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Data availability

Authors agree to make data and Materials supporting the results or analyses presented in their paper available upon reasonable request.

Appendices

Appendix A

Differentiating the definition of \({\varvec{z}}_{1}\) by Eq. (8), we obtain

$$ \dot{\varvec{z}}_{1} = \dot{\varvec{\rho }} - \dot{\varvec{\rho }}_{d} . $$
(47)

Considering the definition of \({\varvec{e}}_{2}\) by Eq. (8), we can rewrite Eq. (47) as

$$ \dot{\varvec{z}}_{1} = {\varvec{e}}_{2} . $$
(48)

Considering the definition of \({\varvec{z}}_{2}\) by Eq. (9), we can rewrite Eq. (48) as

$$ \dot{\varvec{z}}_{1} = {\varvec{z}}_{2} - {{\varvec{\Lambda}}} {\varvec{z}}_{1} . $$
(49)

Differentiating the definition of \({\varvec{z}}_{2}\) by Eq. (9), we obtain

$$ \dot{\varvec{z}}_{2} = \ddot{\varvec{\rho }} - \ddot{\varvec{\rho }}_{d} + {{\varvec{\Lambda}}} \dot{\varvec{z}}_{1} , $$
(50)

Substituting for \(\ddot{\varvec{\rho }}\) from Eq. (1) in Eq. (50) and substituting for \(\dot{\varvec{z}}_{1}\) from Eq. (49), we obtain

$$ \dot{\varvec{z}}_{2} = - {\varvec{C}}\left( \omega \right)\dot{\varvec{\rho }} - {\varvec{N}}\left( {{\varvec{\rho}},\omega ,{\varvec{r}}_{c} ,{\varvec{u}}_{l} } \right) - {\varvec{d}} + {\varvec{u}}_{f} - \ddot{\varvec{\rho }}_{d} + {{\varvec{\Lambda}}} \left( {{\varvec{z}}_{2} - {{\varvec{\Lambda}}} {\varvec{z}}_{1} } \right). $$
(51)

Considering \({\varvec{f}}\left( . \right)\) calculated by Eq. (11), the Eq. (51) can be rewritten as

$$ \dot{\varvec{z}}_{2} = {\varvec{f}}\left( {{\varvec{z}}_{1} ,{\varvec{z}}_{2} , \omega ,{\varvec{r}}_{c} ,{\varvec{u}}_{l} } \right) - {\varvec{d}} + {\varvec{u}}_{f} . $$
(52)

Appendix B

As mentioned in [15], the right-hand side of Eq. (11) can be linearly parameterized as

$$ {\varvec{f}}\left( {{\varvec{z}}_{1} ,{\varvec{z}}_{2} , \omega ,{\varvec{r}}_{c} ,{\varvec{u}}_{l} } \right) = - \ddot{\varvec{\rho }}_{d} - {\varvec{C}}\left( \omega \right)\dot{\varvec{\rho }} - {\varvec{N}}\left( {{\varvec{\rho}},\omega ,{\varvec{r}}_{c} ,{\varvec{u}}_{l} } \right) + {{\varvec{\Lambda}}}\left( {{\varvec{z}}_{2} - {{\varvec{\Lambda}}}{\varvec{z}}_{1} } \right) = {\varvec{W}}\left( {{\varvec{\xi}},{\varvec{z}}_{1} ,{\varvec{z}}_{2} , \omega ,{\varvec{r}}_{c} ,{\varvec{u}}_{l} } \right){\varvec{\theta}}, $$
(53)

where \({\varvec{\xi}} \in {\mathbb{R}}^{3}\) is the dummy variable which is a function of the desired position, velocity and acceleration of the follower spacecraft with respect to the leader one, \({\varvec{W}}\left( {{\varvec{\xi}},{\varvec{z}}_{1} ,{\varvec{z}}_{2} , \omega ,{\varvec{r}}_{c} ,{\varvec{u}}_{l} } \right) \in {\mathbb{R}}^{3 \times 3}\) represents the regression matrix, and \({\varvec{\theta}} \in {\mathbb{R}}^{3}\) the system parameters. Consequently, \(\overline{\varvec{d}}\left( t \right)\), calculated by Eq. (10), can be rearranged by

$$ \overline{\varvec{d}}\left( t \right) = {\varvec{W}}\left( {{\varvec{z}}_{1} ,{\varvec{z}}_{2} , \omega ,{\varvec{r}}_{c} ,{\varvec{u}}_{l} } \right){{\varvec{\Gamma}}} - {\varvec{d}}, $$
(54)

where \({{\varvec{\Gamma}}} = {\varvec{\theta}} - \overline{\varvec{\theta }}\) represents the deviation of system parameters (i.e., \({\varvec{\theta}}\)) from their nominal magnitudes (i.e.,\(\varvec{ \overline{\theta }}\)). In other words, \({{\varvec{\Gamma}}}\) represents uncertainties in system parameters.

Equation (54) can be upper-bounded as

$$ \left\| {\overline{\varvec{d}}} \right\| = \left\| {{\varvec{W}}\left( . \right)} \right\|\left\| {{\varvec{\Gamma}}} \right\| + \left\| {\varvec{d}} \right\|. $$
(55)

The regression matrix \({\varvec{W}}\), as defined in Eq. (53), is the function of leader spacecraft control input, position, and rotation rate (i.e., \({\varvec{u}}_{l} , {\varvec{r}}_{c} , \omega\)), and the desired trajectories (i.e., \({\varvec{\rho}}_{d} , \dot{\varvec{\rho }}_{d} , \ddot{\varvec{\rho }}_{d}\)), and the position and velocity tracking errors of the leader spacecraft with respect to follower one (i.e., \({\varvec{z}}_{1} ,{\varvec{z}}_{2}\)).

The position, rate of orientation, and control input of the leader spacecraft are bounded inputs that are set by the leader spacecraft, and the desired trajectories are bounded vectors that are prescribed based on the desired demand. Let’s define the augmented vector \({\varvec{z}} = \left[ {\begin{array}{*{20}c} {{\varvec{z}}_{1} } \\ {{\varvec{z}}_{2} } \\ \end{array} } \right]\). As mentioned in [15], it can be stated that if the position and velocity tracking error of the follower spacecraft remain in the bounded set \(\Omega_{3} = \left\{ {\left. {\varvec{z}} \right|\varvec{ }\left\| {\varvec{z}} \right\| \le \ell } \right\}\), we have \(\left\| {{\varvec{W}}\left( . \right)} \right\| \le \mu\). where \(\mu\) is a positive constant. As long as the external disturbance and parametric uncertainties remain bounded, i.e. \(\left\| {\varvec{d}} \right\| \le \gamma\) and \(\left\| {{\varvec{\Gamma}}} \right\| \le \varphi\), it can be stated that

$$ \left\| {\overline{\varvec{d}}} \right\| \le \mu \varphi + \gamma \le \delta , $$
(56)

where \(\gamma , \varphi , \delta\) are positive constants. In Sect. 4, it is proved that any trajectories initialized within \(\Omega_{1} = \left\{ {{\varvec{X}}{|} \left\| {{\varvec{X}}\left( t \right)} \right\| \le \frac{{A_{m} }}{{A_{M} }}\ell } \right\} \subset \Omega_{3}\) will remain within \(\Omega_{2} = \left\{ {{\varvec{X}}{|} \left\| {{\varvec{X}}\left( t \right)} \right\| \le \ell } \right\} \subset \Omega_{3}\) and consequently the assumption (56) is consistent.

It is worth highlighting that the proposed control method does not require the knowledge of \(\delta\) and just requires its existence. In fact, the adaptive robust estimator estimates the upper-bound \(\delta .\)

Appendix C

Substituting Eqs. (22), (25), (29), (18) in Eq. (31) we obtain

$$ \dot{V} = {\varvec{z}}_{1}^{T} \left( {{\varvec{z}}_{2} - {{\varvec{\Lambda}}}{\varvec{z}}_{1} } \right) + {\varvec{z}}_{2}^{T} \left( { - {\varvec{K}}_{1} {\varvec{z}}_{2} + {\dot{\tilde{\varvec{\beta} }}}} \right) + \tilde{\varvec{\beta }}^{T} {\dot{\tilde{\varvec{\beta} }}} + k_{\delta }^{ - 1} \tilde{\delta } \left( { - k_{\delta } \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|} \right) + k_{\varepsilon }^{ - 1} \varepsilon \left( { - k_{\varepsilon } \varepsilon } \right) . $$
(57)

Equation (57) can be rearranged by

$$ \dot{V} = {\varvec{z}}_{1}^{T} \left( {{\varvec{z}}_{2} - {{\varvec{\Lambda}}}{\varvec{z}}_{1} } \right) + {\varvec{z}}_{2}^{T} \left( { - {\varvec{K}}_{1} {\varvec{z}}_{2} } \right) + ({\varvec{z}}_{2} + \tilde{\varvec{\beta }})^{T} {\dot{\tilde{\varvec{\beta} }}} - \tilde{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| - \varepsilon^{2} . $$
(58)

Substituting Eq. (27) in the result to obtain

$$ \dot{V} = {\varvec{z}}_{1}^{T} \left( {{\varvec{z}}_{2} - {\Lambda }{\varvec{z}}_{1} } \right) + {\varvec{z}}_{2}^{T} \left( { - {\varvec{K}}_{1} {\varvec{z}}_{2} } \right) + ({\varvec{z}}_{2} + \tilde{\varvec{\beta }})^{T} \left[ {\dot{\varvec{\beta }} - {\varvec{K}}_{2} \left( {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right) - \frac{{\hat{\delta }^{2} \left( {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right)}}{{\hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| + \varepsilon^{2} }}} \right] - \tilde{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| - \varepsilon^{2} . $$
(59)

Considering that for any arbitrary vectors \({\varvec{a}}\) and \( {\varvec{b}}\), we have \({\varvec{a}}^{T} {\varvec{b}} \le \left\| {\varvec{a}} \right\| \left\| {\varvec{b}} \right\| \le \frac{1}{2}\left( {\left\| {\varvec{a}} \right\|^{2} + \left\| {\varvec{b}} \right\|^{2} } \right)\), and \({\varvec{a}}^{T} {\varvec{a}} = \left\| {\varvec{a}} \right\|^{2}\), we have

$$ \begin{aligned} & {\varvec{z}}_{1}^{T} \left( { - {{\varvec{\Lambda}}}{\varvec{z}}_{1} } \right) \le - {\Lambda }_{m} \left\| {{\varvec{z}}_{1} } \right\|^{2} , \\ & {\varvec{z}}_{2}^{T} \left( { - {\varvec{K}}_{1} {\varvec{z}}_{2} } \right) \le - k_{1m} \left\| {{\varvec{z}}_{2} } \right\|^{2} , \\ & ({\varvec{z}}_{2} + \tilde{\varvec{\beta }})^{T} \left( { - K_{2} \left( {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right)} \right) \le - k_{2m} \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|^{2} , \\ & ({\varvec{z}}_{2} + \tilde{\varvec{\beta }})^{T} \dot{\varvec{\beta }} \le \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|{ }\left\| {\overline{\varvec{d}}} \right\| \le \delta \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|, \\ & \left( {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right)^{T} \left[ { - \frac{{\hat{\delta }^{2} \left( {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right)}}{{\hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| + \varepsilon^{2} }}} \right] \le - \frac{{\hat{\delta }^{2} \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|^{2} }}{{\hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| + \varepsilon^{2} }}. \\ \end{aligned} $$
(60)

where \({\Lambda }_{m} ,k_{1m} , k_{2m}\) represent the minimum eigenvalues of matrices \({{\varvec{\Lambda}}},\varvec{ K}_{1} ,\varvec{ K}_{2}\). Considering Eq. (60), the Eq. (59) can be upper-bounded as

$$ \dot{V} \le \frac{1}{2}\left( {\left\| {{\varvec{z}}_{1} } \right\|^{2} + \left\| {{\varvec{z}}_{2} } \right\|^{2} } \right) - {\Lambda }_{{\text{m}}} \left\| {{\varvec{z}}_{1} } \right\|^{2} - k_{1m} \left\| {{\varvec{z}}_{2} } \right\|^{2} + \delta \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| - k_{2m} \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|^{2} - \frac{{\hat{\delta }^{2} \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|^{2} }}{{\hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| + \varepsilon^{2} }} - \tilde{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| - \varepsilon^{2} . $$
(61)

Considering the definition given in Eq. (28), we have

$$ - \tilde{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| + \delta \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| = \hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|, $$
(62)

moreover, it can be easily verified that

$$ - \frac{{\hat{\delta }^{2} \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|^{2} }}{{\hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| + \varepsilon^{2} }} + \hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| - \varepsilon^{2} = \frac{{ - \hat{\delta }^{2} \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|^{2} + \hat{\delta }^{2} \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|^{2} + \varepsilon^{2} \hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| - \varepsilon^{2} \hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| - \varepsilon^{4} }}{{\hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| + \varepsilon^{2} }} = \frac{{ - \varepsilon^{4} }}{{\hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| + \varepsilon^{2} }}. $$
(63)

Considering Eqs. (62) and (63), we can simplify Eq. (61) as

$$ \dot{V} \le \left[ {\frac{1}{2} - {\Lambda }_{{\text{m}}} } \right]\left\| {{\varvec{z}}_{1} } \right\|^{2} + \left[ {\frac{1}{2} - k_{1m} } \right]\left\| {{\varvec{z}}_{2} } \right\|^{2} - k_{2m} \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|^{2} - \frac{{\varepsilon^{4} }}{{\hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| + \varepsilon^{2} }}. $$
(64)

Consequently, if the control gains are selected such that conditions in Eq. (33) are satisfied, we have

$$ \dot{V} \le - \lambda_{1} \left\| {{\varvec{z}}_{1} } \right\|^{2} - \lambda_{2} \left\| {{\varvec{z}}_{2} } \right\|^{2} - k_{2m} \left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\|^{2} - \frac{{\varepsilon^{4} }}{{\hat{\delta }\left\| {{\varvec{z}}_{2} + \tilde{\varvec{\beta }}} \right\| + \varepsilon^{2} }} . $$
(65)

where \(\lambda_{1}\) and \(\lambda_{2}\) are positive constants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homayounzade, M. Adaptive robust nonlinear control of spacecraft formation flying: a novel disturbance observer-based control approach. Int. J. Dynam. Control 10, 1471–1484 (2022). https://doi.org/10.1007/s40435-021-00898-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00898-x

Keywords

Navigation