Skip to main content
Log in

Complex compound-combination multi switching anti-synchronization of fractional-order complex chaotic systems and integer-order complex chaotic systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Based on three fractional-order complex chaotic systems and two integer-order complex chaotic systems, we propose a novel synchronization scenario of complex compound-combination multi-switching anti-synchronization (CCCMSAS), which is the first of this kind. The CCCMSAS states are completed between three leader and two follower systems by adopting the nonlinear control method and choosing suitable Lyapunov function on the basis of the complex space. Furthermore, different switches and leader–follower systems of different dimensions are selected as the two examples to show the validity and maneuverability of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199

    Article  MathSciNet  MATH  Google Scholar 

  2. Pecora LM, Carrroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821–824

    Article  MathSciNet  MATH  Google Scholar 

  3. Si GQ, Sun ZY, Zhang YB, Chen WQ (2012) Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Anal Real 13(4):1761–1771

    Article  MathSciNet  MATH  Google Scholar 

  4. Agrawal SK, Das S (2015) Projective synchronization between different fractional-order hyperchaotic systems with uncertain parameters using proposed modified adaptive projective synchronization technique. Math Method Appl Sci 37(14):2164–2176

    Article  MathSciNet  MATH  Google Scholar 

  5. Niu Y, Wang X (2012) Adaptive projective synchronization of different chaotic systems with nonlinearity inputs. Chin Phys B 26(11):821–827

    MATH  Google Scholar 

  6. Ouannas A, Odibat Z (2015) Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dyn 81(1–2):765–771

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang G, Liu Z, Ma Z (2007) Generalized synchronization of different dimensional chaotic dynamical systems. Chaos Solitons Fractals 32(2):773–779

    Article  MathSciNet  MATH  Google Scholar 

  8. Terry JR, Vanwiggeren GD (2001) Chaotic communication using generalized synchronization. Chaos Solitons Fractals 12(1):45–152

    Article  Google Scholar 

  9. Vaidyanathan S, Sampath S, Azar AT (2015) Global chaos synchronization of identical chaotic systems via novel sliding mode control method and its application to Zhu system. Int J Model Identif Control 23(1):92–100

    Article  Google Scholar 

  10. Chen D, Zhang R, Ma X, Liu S (2011) Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dyn 69(1–2):35–55

    MathSciNet  MATH  Google Scholar 

  11. Liu J, Liu ST, Sprott JC (2015) Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters. Nonlinear Dyn 83(2016):1109–1121

    MathSciNet  MATH  Google Scholar 

  12. Liu ST, Liu P (2011) Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Anal Real 12(6):3046–3055

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu J, Liu ST, Yuan C (2015) Adaptive complex modified projective synchronization of complex chaotic (hyperchaotic) systems with uncerta in complex parameters. Nonlinear Dyn 2:1035–1047

    Article  MATH  Google Scholar 

  14. Liu P, Liu ST, Li X (2012) Adaptive modified function projective synchronization of general uncertain chaotic complex systems. Phys Scr 85(3):438–445

    Article  Google Scholar 

  15. Zheng S, Dong GG, Bi QS (2010) Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters. Commun Nonlinear Sci 15(11):3547–3556

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu Y, Wang H, Li Y, Pei B (2014) Image encryption based on synchronization of fractional chaotic systems. Commun Nonlinear Sci 19(10):3735–3744

    Article  MathSciNet  MATH  Google Scholar 

  17. Minati L, Chiesa P, Tabarelli D, Incerti L, Jovicich J (2015) Synchronization, non-linear dynamics and low-frequency fluctuations: analogy between spontaneous brain activity and networked single-transistor chaotic oscillators. Chaos 25(3):15775–16171

    Article  MathSciNet  Google Scholar 

  18. Luo RZ, Wang YL, Deng SC (2011) Combination synchronization of three classic chaotic systems using active backstepping design. Chaos 21(4):1–6

    MATH  Google Scholar 

  19. Sun JW, Shen Y, Zhang G, Xu C, Cui G (2013) Combination–combination synchronization among four identical or different chaotic systems. Nonlinear Dyn 73(3):1211–1222

    Article  MathSciNet  MATH  Google Scholar 

  20. Mahmoud GM, Abed-Elhameed TM, Ahmed ME (2016) Generalization of combination–combination synchronization of chaotic-dimensional fractional-order dynamical systems. Nonlinear Dyn 83(4):1885–1893

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou X, Xiong L, Cai X (2014) Combination-combination synchronization of four nonlinear complex chaotic systems. Abstr Appl Anal 2(3):1–14

    MathSciNet  MATH  Google Scholar 

  22. Sun JW, Wang Y, Wang YF, Cui G, Shen Y (2016) Compound-combination synchronization of five chaotic systems via nonlinear control. Optik 127(8):4136–4143

    Article  Google Scholar 

  23. Ojo KS, Njah AN, Olusola OI (2015) Compound-combination synchronization of chaos in identical and different orders chaotic systems. Arch Control Sci 25(4):463–490

    Article  MathSciNet  MATH  Google Scholar 

  24. Ibraheem A (2020) Dual compound–compound synchronization of twelve n-dimensional dynamical systems. Arab J Sci Eng 45(2020):6835–6848

    Article  Google Scholar 

  25. Singh AK, Yadav VK, Das S (2017) Dual combination synchronization of the fractional order complex chaotic cystems. J Comput Nonlin Dyn 12(1):011017

    Article  Google Scholar 

  26. Sun JW, Jiang SX, Cui GZ, Wang Y (2016) Dual combination synchronization of six chaotic systems. J Bacteriol 14(1):47–53

    Google Scholar 

  27. Yadav VK, Prasad G, Srivastava M, Das S (2019) Combination–combination phase synchronization among non-identical fractional order complex chaotic systems via nonlinear control. Int J Control 7(2):330–340

    Article  MathSciNet  Google Scholar 

  28. Ucar A, Lonngren KE, Bai EW (2008) Multi-switching synchronization of chaotic systems with active controllers. Chaos Solitons Fractals 38(1):254–262

    Article  Google Scholar 

  29. Vincent UE, Saseyi AO, Mcclintock PVE (2015) Multi-switching combination synchronization of chaotic systems. Nonlinear Dyn 80(1–2):845–854

    Article  MathSciNet  MATH  Google Scholar 

  30. Shahzad M (2020) Multi-switching synchronization of different orders: a generalization of increased/reduced order synchronization. Iran J Technol Trans Sci 44(1):167–176

    Article  MathSciNet  Google Scholar 

  31. Khan A, Khattar D, Prajapati N (2017) Multiswitching combination-combination synchronization of chaotic systems. Pramana J Phys 88(3):47

    Article  Google Scholar 

  32. Khan A, Khattar D, Prajapati N (2017) Dual combination combination multi switching synchronization of eight chaotic systems. Chin J Phys 55(4):1209–1218

    Article  Google Scholar 

  33. Ibraheem A, Khan A (2019) Multi-switching compound-compound anti-synchronization of non-identical hyperchaotic systems. Int J Simul Model 1(2019):1–15

    Google Scholar 

  34. Fowler AC, Gibbon JD, Mcguinness MJ (1982) The complex Lorenz equations. Physica D 4(2):139–163

    Article  MathSciNet  MATH  Google Scholar 

  35. Dabiri A, Moghaddam BP (2018) Machado JAT (2018) Optimal variable-order fractional PID controllers for dynamical systems. J Comput Appl Math 339:40–48

    Article  MathSciNet  MATH  Google Scholar 

  36. Moghaddam BP, Machado JAT (2017) Extended algorithms for approximating variable order fractional derivatives with applications. J Sci Comput 71(3):1351–1374

    Article  MathSciNet  MATH  Google Scholar 

  37. Guy J (2001) Fractional master equation: non-standard analysis and Liouville–Riemann derivative. Chaos Solitons Fractals 12(13):2577–2587

    Article  MathSciNet  MATH  Google Scholar 

  38. Kilbas AA, Marzan SA (2005) Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differ Equ 41(1):84–89

    Article  MathSciNet  MATH  Google Scholar 

  39. Luo C, Wang X (2018) Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn 71(1):241–257

    MathSciNet  MATH  Google Scholar 

  40. Luo C, Wang X (2013) Chaos generated from the fractional-order complex Chen system and its application to digital secure communication. Int J Mod Phys C 24(04):1350025

    Article  MathSciNet  Google Scholar 

  41. Liu XJ, Hong L, Yang LX (2013) Fractional-order complex T system: bifurcations, chaos control, and synchronization. Nonlinear Dyn 75(3):589–602

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu J, Liu ST (2017) Complex modified function projective synchronization of complex chaotic systems with known and unknown complex parameters. Appl Math Model 48(2017):440–450

    Article  MathSciNet  MATH  Google Scholar 

  43. Gamal MM, Emad EM (2013) Complex modified projective synchronization of two chaotic complex nonlinear systems. Nonlinear Dyn 73(4):2231–2240

    Article  MathSciNet  MATH  Google Scholar 

  44. Mahmoud GM, Ahmed ME, Mahmoud EE (2008) Analysis of hyperchaotic complex Lorenz systems. Int J Mod Phys C 19(10):1477–1494

    Article  MATH  Google Scholar 

  45. Luo C, Wang X (2013) Hybrid modified function projective synchronization of two different dimensional complex nonlinear systems with parameters identification. J Frankl I 350(9):2646–2663

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is jointly supported by the National Natural Science Foundation of China (11202249) and Taiyuan Institute of Technology Science Fund Project (2018LG05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xiao, J. Complex compound-combination multi switching anti-synchronization of fractional-order complex chaotic systems and integer-order complex chaotic systems. Int. J. Dynam. Control 10, 525–542 (2022). https://doi.org/10.1007/s40435-021-00816-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00816-1

Keywords

Navigation