Skip to main content

Advertisement

Log in

Optimal control of Chlamydia model with vaccination

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this work, a vaccination model for Chlamydia trachomatis with cost-effectiveness optimal control analysis is developed and analyzed. The disease free equilibrium of model is shown to be locally asymptotically stable when the reproduction number is less than unity. The disease-free equilibrium of the model was proven not to be globally asymptotically stable. The model is also shown to undergo the phenomenon of backward bifurcation when the associated reproduction number is less than unity. The necessary conditions for the existence of optimal control and the optimality system for the model are established using the Pontryagin’s Maximum Principle. Global Sensitivity analysis is also carried out to determine parameters which most affect the dynamics of the disease, when the reproduction number, exposed, infectious and treated populations are used as response functions. The parameters that strongly drive the dynamics of the disease when the infectious class is used as the response function are the natural death rate \(\mu \), the treatment failure rate \(\varphi \), and the fraction of people that failed treatment p. Simulations of the optimal control system reveal that the strategy that combines Chlamydia trachomatis prevention and treatment is the most cost-effective strategy in the fight against the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gottlieb SL, Berman SM Low N (2010) Screening and treatment to prevent sequelae in women with Chlamydia trachomatis genital infection: how much do we know? J Infect Dis 201(S2):156–167

    Article  Google Scholar 

  2. Manavi KA (2006) Review on infection with Chlamydia trachomatis. Best Pract Res Clin Obstet Gynaecol 20:941–951

    Article  Google Scholar 

  3. Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM, Cohen MS, Harris KM, Udry JR (2004) Prevalence of chlamydial and gonococcal infections among young adults in the United States. J Am Med Assoc 291:2229–2236

    Article  Google Scholar 

  4. Schillinger JA, Dunne EF, Chapin JB, Ellen JM, Gaydos CA, Willard NJ, Kent CK, Marrazzo JM, Klausner JD, Rietmeijer CA, Markowitz LE (2005) Prevalence of Chlamydia trachomatis infection among men screened in 4 U.S. cities. Sex Transm Dis 32:74–77

    Article  Google Scholar 

  5. Hillis SD, Wasserheit JN (1996) Screening for chlamydia—a key to the prevention of pelvic inflammatory disease. New Engl J Med 334(21):1399–1401

    Article  Google Scholar 

  6. Regan DG, Wilson DP, Hocking JS (2008) Coverage is the key for effective screening of Chlamydia trachomatis in Australia. J Infect Dis 198:349–358

    Article  Google Scholar 

  7. Zakher B, Cantor AG, Pappas M et al (2014) Screening for gonorrhea and Chlamydia: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 161:884–893

    Article  Google Scholar 

  8. Omame A, Umana RA, Okuonghae D, Inyama SC (2018) Mathematical analysis of a two-sex Human Papillomavirus (HPV) model. Int J Biomath 11:7

    Article  MathSciNet  Google Scholar 

  9. Omame A, Umana RA, Okuonghae D, Inyama SC (2020) Analysis of a co-infection model for HPV-TB. Appl Math Model 77:881–901

    Article  MathSciNet  Google Scholar 

  10. Omame A, Okuonghae D, Inyama SC (2020) A Mathematical Study of a Model for HPV with Two High-Risk Strains. In: Dutta H (eds) Mathematical Modelling in Health, Social and Applied Sciences. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2286-4_4

  11. Sharma S, Samanta GP (2014) Analysis of Chlamydia epidemic model. J Biol Syst 22(4):713–744

    Article  Google Scholar 

  12. Omame A, Nnanna CU, Inyama SC (2021) Optimal control and cost-effectiveness analysis of an HPV-Chlamydia Trachomatis co-infection model. Acta Biotheor https://doi.org/10.1007/s10441-020-09401-z

  13. Sharomi O, Gumel AB (2009) Re-infection-induced backward bifurcation in the transmission dynamics of Chlamydia tracomatics. J Math Anal Appl 356:96–118

    Article  MathSciNet  Google Scholar 

  14. Omame A, Inyama SC (2014) Stochastic model and simulation of the prevalence of measles. Int J Math Sci Eng 8(1):311–323

    Google Scholar 

  15. Uwakwe JI, Inyama SC, Omame A (2020) Mathematical model and optimal control of new-castle disease (ND). Appl Comput Math 9(3):70–84

    Article  Google Scholar 

  16. Gilbert FM, Ihejirika I, Inyama SC, Omame A, Mbachu HI, Uwakwe JI (2019) Deterministic mathematical model of tuberculosis disease with treatment and recovered groups. Int J Math Stat Invent 7(1):47–60

    Google Scholar 

  17. Carr J (1981) Applications of center manifold theory. Springer, Berlin

    Book  Google Scholar 

  18. Nakul C, Cushing JM, Hyman JM (2006) Bifurcation analysis of mathemaical model for malaria transmission. SIAM J Appl Math 67(1):24–45

    Article  MathSciNet  Google Scholar 

  19. Roumen AA, Salisu MG, Salisu U (2014) Computers and mathematics with application. 68:931–940

  20. Zhang X, Liu X (2008) Backward bifurcation of an epidemic model with saturated treatment function. J Math Anal Appl 348:433–443

    Article  MathSciNet  Google Scholar 

  21. Zhang X, Liu X (2009) Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment. Nonlinear Anal Real World Appl 10:565–575

    Article  MathSciNet  Google Scholar 

  22. Gumel AB (2012) Causes of backward bifuration in some epidemiologial models. J Math Anal Appl 395:355–365

    Article  MathSciNet  Google Scholar 

  23. Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 2:361–404

    Article  MathSciNet  Google Scholar 

  24. Getachu TT, Oluwole DM, David M (2017) Modelling and optimal control of typhoid fever disease with cost-effective stratagies. Comput Math Methods Med 2017:2324518

    MATH  Google Scholar 

  25. Egeonu KU, Omame A, Inyama SC (2021) A co-infection model for two-strain malaria and cholera with optimal control. Int J Dyn Control. https://doi.org/10.1007/s40435-020-00748-2

    Article  MathSciNet  Google Scholar 

  26. Getachew TT, Oluwale DM, David M (2018) Co-dynamics of pneumonia and Typhoid fever diseases with cost effective optimal control analysis. Appl Math Comput 316:438–457

    MathSciNet  MATH  Google Scholar 

  27. Malik T, Imran M, Jayaraman R (2016) Optimal control with multiple human papillomavirus vaccines. J Theor Biol 393:179–193

    Article  Google Scholar 

  28. Okosun KO, Makinde OD (2013) Optimal control analysis of malaria in the presence of non-linear incidence rate. Appl Comput Math Int Journal 12(1):20–32

    MathSciNet  MATH  Google Scholar 

  29. Okosun KO, Makinde OD (2014) Optimal control analysis of hepatitis C virus with acute and chronic stages in the presence of treatment and infected immigrants. Int J Biomath 7(2):1450019

    Article  MathSciNet  Google Scholar 

  30. Okosun KO, Makinde OD (2014) A co-infection model of malaria and cholera diseases with optimal control. Math Biosci 258:19–32

    Article  MathSciNet  Google Scholar 

  31. Isere AO, Okuonghae D (2014) Optimal control model for the outbreak of cholera in Nigeria. Afr Math Comput Sci Res 7:24–30

    Article  Google Scholar 

  32. Mohammed-Awel J, Numfor E (2017) Optimal insecticide treated bednets coverage and malaria treatment in a malaria-HIV co-infection model. J Biol Dyn 11:160–191

    Article  MathSciNet  Google Scholar 

  33. Omame A, Okounghae D, Nwafor UE, Odionyenma BU (2021) A co-infection model for HPV and Syphilis with Optimal Control and cost effectiveness analysis. Int J Biomath. https://doi.org/101142/S1793524521500509

  34. Omame A, Okounghae D (2021) A co-infection model for oncogenic human papilomavirus and tuberculosis with optimal control and cost effectiveness analysis. Optim Contr Appl Math. https://doi.org/10.1002/oca.2717

    Article  MATH  Google Scholar 

  35. LaSalle JP (1976) The stability of dynamical systems. SIAM, Philadelphia

    Book  Google Scholar 

  36. van denDriessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemi equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  Google Scholar 

  37. Castillo-Chavez C, Feng Z, Huang W (1999) On the computation of \(R_0\) and its role on global stability. In: Mathematical approaches for emerging and reemerging infectious diseases: an introduction (Minneapolis, MN, 1999), vol 125. Springer, New York, pp 229–250

  38. Garba SM, Gumel AB (2010) Effect of cross-immunity on the transmission dynamics of two strains of dengue. Int J Comput Math 87(10):2361–2384

    Article  MathSciNet  Google Scholar 

  39. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Wiley, New York

    MATH  Google Scholar 

  40. Kelley JL (1975) General topology. Springer, Berlin ISBN 978-0-387-90125-1

    MATH  Google Scholar 

  41. Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman & Hall, Boca Raton

    Book  Google Scholar 

  42. Blower SM, Dowlatabadi HS (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model as an example’ international statistical institute. Int Stat Rev 62:229–243

    Article  Google Scholar 

Download references

Acknowledgements

The authors are immensely grateful to the editors and anonymous reviewers for their invaluable and constructive criticisms, that have improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. B. Odionyenma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odionyenma, U.B., Omame, A., Ukanwoke, N.O. et al. Optimal control of Chlamydia model with vaccination. Int. J. Dynam. Control 10, 332–348 (2022). https://doi.org/10.1007/s40435-021-00789-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00789-1

Navigation