Skip to main content
Log in

Control of a bilateral teleoperation system in the presence of varying time delay, model uncertainty and actuator faults

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents a novel scheme for robust controller design for a bilateral teleoperation system in the presence of asymmetric varying time-delay in the communication channel, parametric uncertainty in nonlinear model of manipulators, and actuator faults. First, a passive Fault Tolerant Control law is proposed for nominal system. Then, by using the Lyapunov–Krasovskii theorem, sufficient stability conditions of real and faulty system are obtained to tune the controller parameters. The main contribution of the proposed method is that it can assure the stability, position and force tracking in the presence of bias fault and partial failure in actuators of nonlinear teleoperation system, simultaneously. Also, the developed controller is fixed-structure which can be implemented easily in practice, without any need to identification of system parameters or fault estimation. Simulation and experimental results are presented to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Data and material can be available.

References

  1. Hokayem PF, Spong MW (2006) Bilateral teleoperation: an historical survey. Automatica 42(12):2035–2057

    Article  MathSciNet  MATH  Google Scholar 

  2. Nuno E, Basanez L, Ortega R (2011) Passivity-based control for bilateral teleoperation: a tutorial. Automatica 47(12):485–495

    Article  MathSciNet  MATH  Google Scholar 

  3. Huang PF, Dai P, Liu Z (2018) Asymmetric wave variable compensation method in dual-master-dual-slave multilateral teleoperation system. Mechatronics 49(1):1–10

    Article  Google Scholar 

  4. Sun D, Naghdy F, Du H (2014) Application of wave-variable control to bilateral teleoperation systems: a survey. Annu Rev Control 38:12–31

    Article  Google Scholar 

  5. Anderson R, Spong M (1989) Bilateral control of teleoperators with time delay. IEEE Trans Autom Control 34:494–501

    Article  MathSciNet  Google Scholar 

  6. Niemeyer G, Slotine J (1991) Stable adaptive teleoperation. IEEE J Ocean Eng 16:152–162

    Article  Google Scholar 

  7. Islam SH, Liu PX, Saddik AEL, Dias J (2015) Bilateral shared autonomous systems with passive and non-passive input forces under time varying delay. ISA Trans 54:218–228

    Article  Google Scholar 

  8. Nuno E, Basanez L, Ortega R, Spong M (2009) Position tracking for nonlinear teleoperators with variable time-delay. Int J Robot Res 28:895–910

    Article  Google Scholar 

  9. Lima MV, Mozelli LA, Neto AA, Souza FO (2020) A simple algebraic criterion for stability of bilateral teleoperation systems under time-varying delays. Mech Syst Signal Process 137:1–11

    Google Scholar 

  10. Ganjefar S, Rezaei S, Hashemzadeh F (2017) Position and force tracking in nonlinear teleoperation systems with sandwich linearity in actuators and time-varying delay. Mech Syst Signal Process 86:308–324

    Article  Google Scholar 

  11. Yang L, Chen Y, Liu Z, Chen K, Zhang Z (2019) Adaptive fuzzy control for teleoperation system with uncertain kinematics and dynamics. Int J Control, Autom Syst 17(5):1158–1166

    Article  Google Scholar 

  12. Sarajchi MH, Ganjefar S, Hoseini SM, Shao Z (2019) Adaptive controller design based on predicted time-delay for teleoperation systems using lambert W function. Int J Control Autom Syst 17(6):1445–1453

    Article  Google Scholar 

  13. Ebrahimi Bavili R, Akbari A, Mahboobi Esfanjani R (2020) Passivity-based control of nonlinear teleoperation systems with non-passive interaction forces. Int Service Robot 13:419–437

    Article  Google Scholar 

  14. Ebrahimi Bavili R, Akbari A, Mahboobi Esfanjani R (2020) Controller design for nonlinear bilateral teleoperation systems via total energy shaping. Mech Syst Signal Process 150:1–20

    Google Scholar 

  15. Hu HC, Liu YC (2017) Passivity-based control framework for task-space bilateral teleoperation with parametric uncertainty over unreliable networks. ISA Trans 70:187–199

    Article  Google Scholar 

  16. Liu X, Tao R, Tavakoli M (2014) Adaptive control of uncertain nonlinear teleoperation systems. Mechatronics 24(1):66–78

    Article  Google Scholar 

  17. Yang Y, Hua C, Guan X (2014) Coordination control for bilateral teleoperation with kinematics and dynamics uncertainties. Robot Comput Integr Manuf 30(2):180–188

    Article  Google Scholar 

  18. Leung G, Francis B, Apkarian J (1995) Bilateral controller for teleoperators with time delay via mu-synthesis. IEEE Trans Robot Autom 11(1):105–116

    Article  Google Scholar 

  19. Colgate J (1993) Robust impedance shaping telemanipulation. IEEE Trans Robot Autom 9(4):374–384

    Article  Google Scholar 

  20. Sirouspour S (2005) Modeling and control of cooperative teleoperation systems. IEEE Trans Robot 21(6):1220–1225

    Article  Google Scholar 

  21. Mohammadi L, Alfi A, Xu B (2017) Robust bilateral control for state convergence in uncertain teleoperation systems with time-varying delay: a guaranteed cost control design. Nonlinear Dyn 88(2):1413–1426

    Article  MATH  Google Scholar 

  22. Shahdi A, Sirouspour S (2009) Adaptive/robust control for time-delay teleoperation. IEEE Trans Robot 25(1):196–205

    Article  Google Scholar 

  23. Sharifi I, Talebi HA, Motaharifar M (2017) Robust Output feedback controller design for time-delayed teleoperation: experimental results. Asian J Control 19(2):1–11

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault–tolerant control system. Annu Rev Control 32:229–252

    Article  Google Scholar 

  25. Jiang J, Yu X (2012) Fault tolerant control systems: a comparative study between active and passive approaches. Annu Rev Control 36:60–72

    Article  Google Scholar 

  26. Boukhnifer M, Ferreira A (2008) Fault tolerant control of a bilateral teleoperated micromanipulation system. In: IEEE/RSJ international conference on intelligent robots and systems, Nice, September, pp 22–26

  27. Boukhnifer M, Ferreira A (2012) Fault tolerant control of a teleoperated piezoelectric microgripper. Asian J Control 15:1–13

    MathSciNet  MATH  Google Scholar 

  28. Marton L, Esclusa JA (2013) Energetic approach for actuator fault accommodation: application to bilateral teleoperation. In: Conference on control and fault-tolerant systems, Nice, October 2013, pp 9–11

  29. Li JN, Li L (2016) Reliable control for bilateral teleoperation system with actuator faults using fuzzy disturbance observer. IET Control Theory Appl 11(3):446–455

    Article  MathSciNet  Google Scholar 

  30. Ebrahimi Bavilli R, Khosrowjerdi MJ, Vatankhah R (2015) Active fault tolerant controller design using model predictive control. J Control Eng Appl Inform 17:68–76

    Google Scholar 

  31. Gu K, Kharitonov VL, Jie C (2000) Stability of time-delay systems. Springer, Berlin

    MATH  Google Scholar 

  32. Fridman E (2010) Introduction to time-delay systems, analysis and control. Springer, Cham

    Google Scholar 

  33. Astrom KJ, Hagglund T (1995) PID controllers: theory, design, and tuning. Instrument Society of America, Pittsburgh

    Google Scholar 

Download references

Funding

This research is supported by Sahand University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robab Ebrahimi Bavili.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Code availability

Codes are written in Matlab software and can be available.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi Bavili, R., Farajzadeh Bavil, A. & Akbari, A. Control of a bilateral teleoperation system in the presence of varying time delay, model uncertainty and actuator faults. Int. J. Dynam. Control 9, 1261–1276 (2021). https://doi.org/10.1007/s40435-020-00725-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00725-9

Keywords

Navigation