Skip to main content
Log in

Traveling wave solution and Painleve’ analysis of generalized fisher equation and diffusive Lotka–Volterra model

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, we have obtained the traveling wave solution for generalized Fisher equation and Lotka–Volterra (L-V) model with diffusion using hyperbolic function method. The Painleve’ analysis has been used to check both of the system’s integrability. Obtained solutions have also been plotted to represent their spatio-temporal dependence. The three dimensional plot shows a monotonic profile of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smoller J (2012) Shock waves and reaction diffusion equations, vol 258. Springer, Berlin

    MATH  Google Scholar 

  2. Champneys A, Hunt G, Thompson J (1999) Localization and solitary waves in solid mechanics. Advanced series in nonlinear dynamics, World Scientific, Singapore

    Book  Google Scholar 

  3. Murray J (2013) Mathematical biology. Biomathematics, Springer, Berlin

    MATH  Google Scholar 

  4. Volpert A (2000) Traveling wave solutions of parabolic systems. American Mathematical Society, Providence, Rhode Island

    Google Scholar 

  5. Fife PC (1979) Lecture notes in biomathematics, vol 28. Springer, Berlin

    Google Scholar 

  6. Maitra S (2012) Traveling wave solutions of Fisher’s equation and diffusive Lotka–Volterra equations. Far East J Appl Math 64(2):117–128

    MathSciNet  MATH  Google Scholar 

  7. Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7(4):355–369

    Article  Google Scholar 

  8. Franak Kameneetiskii DA (1969) Diffusion and heat transfer in chemical kinetics, 1st edn. Plenum Press, New York

    Google Scholar 

  9. Canosa J (2003) Diffusion in nonlinear multiplicative media. J Math Phys 10(10):1862–1868

    Article  Google Scholar 

  10. Gardner CS, Greene JM, Kruskal MD, Miura RM (1967) Method for solving the Korteweg–de Vries equation. Phys Rev Lett 19:1095–1097

    Article  Google Scholar 

  11. Hirota R (1973) Exact N-soliton solutions of the wave equation of long waves in shallow water and in nonlinear lattices. J Math Phys 14(7):810–814

    Article  MathSciNet  Google Scholar 

  12. Wang M, Zhou Y, Li Z (1996) Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys Lett A 216:67–75

    Article  Google Scholar 

  13. Wazwaz AM (2004) The tanh method for traveling wave solutions of nonlinear equations. Appl Math Comput 154(3):713–723

    MathSciNet  MATH  Google Scholar 

  14. He JH, Wu XH (2006) Exp-function method for nonlinear wave equations. Chaos Soliton Fractals 30(3):700–708

    Article  MathSciNet  Google Scholar 

  15. Guo GP, Zhang JF (2002) Notes on the hyperbolic function method for solitary wave solutions. Acta Phys Sin 51(6):1159–1162

    MATH  Google Scholar 

  16. Lin G, Rual S (2014) Traveling wave solutions for delayed reaction–diffusion systems and applications to diffusive Lotka–Volterra competition models with distributed delays. J Dyn Differ Equ 26:583–605

    Article  MathSciNet  Google Scholar 

  17. Fan EG (2002) Traveling wave solutions for nonlinear equations using symbolic computation. Comput Math Appl 43:671–680

    Article  MathSciNet  Google Scholar 

  18. Kudryashov NA (2005) Exact solitary waves of the Fisher equation. Phys Lett A 342:99–106

    Article  MathSciNet  Google Scholar 

  19. Zhou Q, Ekici M, Sonmezoghu A, Manafian J, Khaleghizadeh S, Mirzazadeh M (2016) Exact solitary wave solution to the generalized Fisher equation. Optik-Int J Light Electron Opt 127(24):12085–12092

    Article  Google Scholar 

  20. Kyrychko YN, Blyuss KB (2009) Persistence of travelling waves in a generalized Fisher equation. Phys Lett A 373(6):668–674

    Article  Google Scholar 

  21. Ni W, Shi J, Wang M (2018) Global stability and pattern formation in a nonlocal diffusive Lotka–Volterra competition model. J Differ Equ. https://doi.org/10.1016/j.jde.2018.02.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Dunbar S (1981) Traveling wave solutions of diffusive Volterra–Lotka interactions equations. Ph.D. Thesis, University of Minnesota

  23. McMurtie R (1978) Persistence and stability of single species and prey-predator systems in spatially heterogeneous environments. Math Biosci 39:11–51

    Article  MathSciNet  Google Scholar 

  24. Okubo A (1980) Diffusion and ecological problems: mathematical models. Biomathematics, vol 10. Springer, Berlin

    MATH  Google Scholar 

  25. Dunbar SR (1983) Traveling wave solutions of diffusive Lotka–Volterra equations. J Math Biol 17:11–32

    Article  MathSciNet  Google Scholar 

  26. Ma L, Guo S (2016) Stability and bifurcation in a diffusive Lotka–Volterra system with delay. Comput Math Appl 72:147–177

    Article  MathSciNet  Google Scholar 

  27. Bai CL (2001) Exact solutions for nonlinear partial differential equation: a new approach. Phys Lett A 288(3–4):191–195

    Article  MathSciNet  Google Scholar 

  28. Goriely A (2001) Integrability and nonintegrability of dynamical systems. World Scientific Publishing, Singapore

    Book  Google Scholar 

  29. Conte R, Musette M (2008) The Painlevé handbook. Springer, Berlin

    MATH  Google Scholar 

  30. Ablowitz MJ, Ramani A, Segur H (1980) A connection between nonlinear evolution equations and ordinary differential equations of P-type II. J Math Phys 21:1006

    Article  MathSciNet  Google Scholar 

  31. Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7(4):353–369

    MATH  Google Scholar 

  32. Broadbridge P, Bradshaw-Hajek BH (2016) Exact solutions for logistic reaction–diffusion equations in biology. Z Angew Math Phys 67:93. https://doi.org/10.1007/s00033-016-0686-3

    Article  MathSciNet  MATH  Google Scholar 

  33. Cantrell RS, Cosner C (2003) Spatial ecology via reaction–diffusion equations. Wiley, Chichester

    MATH  Google Scholar 

  34. Biktashev VN, Brindley J, Holden AV, Tsyganov MA (2004) Pursuit-evasion predator-prey waves in two spatial dimensions. Chaos 14:988

    Article  MathSciNet  Google Scholar 

  35. Shukla JB, Verma S (1981) Effects of convective and dispersive interactions on the stability of two species. Bull Math Biol 43(5):593–610

    Article  MathSciNet  Google Scholar 

  36. Murray JD (2003) Mathematical biology, 3rd edn. Springer, New York

    Book  Google Scholar 

  37. Mulone G, Straughan B, Wang WD (2007) Stability of epidemic models with evolution. Stud Appl Math 118(2):117–132

    Article  MathSciNet  Google Scholar 

  38. Ablowitz MJ, Ramani A, Segur H (1980) A connection between nonlinear evolution equations and ordinary differential equations of P-type I. J Math Phys 21:715

    Article  MathSciNet  Google Scholar 

  39. Kudryashov NA, Zakharchenko AS (2014) Analytical properties and exact solutions of the Lotka–Volterra competition system. arXiv:1409.6903v1

Download references

Acknowledgements

We are very thankful to the anonymous reviewers for their insightful comments and suggestions, which helped us to improve the manuscript considerably and further open doors for future work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Kundu.

Appendices

Appendix-A

$$\begin{aligned} 3a_2^2b_2p+b_2^3p=0, \end{aligned}$$
(A.1)
$$\begin{aligned} 3a_2^2b_1p+6a_1a_2b_2p+3b_1b_2^2p=0, \end{aligned}$$
(A.2)
$$\begin{aligned}&a_2^2p-3a_0a_2^2p-6a_1a_2b_1p-3a_1^2b_2p+b_2^2p\nonumber \\&\quad -3a_0b_2^2p-3a_2^2b_2p-3b_1^2b_2p\nonumber \\&\quad -a_2^2pq-b_2^2pq+6b_2Dk^2=0, \end{aligned}$$
(A.3)
$$\begin{aligned}&2a_1a_2p-6a_0a_1a_2p-3a_1^2b_1p-3a_2^2b_1p-b_1^3p\nonumber \\&\quad -6a_1a_2b_2p+2b_1b_2p\nonumber \\&\quad -6a_0b_1b_2p-2a_1a_2pq-2b_1b_2pq+2b_1Dk^2\nonumber \\&\quad +2a_2k\lambda =0, \end{aligned}$$
(A.4)
$$\begin{aligned}&a_1^2p-3a_0a_1^2p+a_2^2p-3a_0a_2^2p-6a_1a_2b_1p+b_1^2p\nonumber \\&\quad +3a_0b_1^2p+2a_0b_2p-3a_0^2b_2p\nonumber \\&\quad -3a_1^2b_2p-a_1^2pq-a_2^2pq-b_1^2pq+b_2pq\nonumber \\&\quad -2a_0b_2pq+4b_2Dk^2+a_1k\lambda =0, \end{aligned}$$
(A.5)
$$\begin{aligned}&2a_1a_2p-6a_0a_1a_2p+2a_0b_1p+3a_0^2b_1p-3a_1^2b_1p\nonumber \\&\quad -2a_1a_2pq+b_1pq\nonumber \\&\quad -2a_0b_1pq+b_1Dk^2+a_2k\lambda =0, \end{aligned}$$
(A.6)
$$\begin{aligned} 2a_0a_1p-3a_0^2a_1p-a_1^3p+a_1pq-2a_0a_1pq=0, \end{aligned}$$
(A.7)
$$\begin{aligned}&2a_0a_2p-3a_0^2a_2p-3a_1^2a_2p+2a_1b_1p-6a_0a_1b_1p\nonumber \\&\quad +a_2pq-2a_0a_2pq\nonumber \\&\quad -2a_1b_1pq+a_2Dk^2+b_1k\lambda =0, \end{aligned}$$
(A.8)
$$\begin{aligned}&-a_1^3p-3a_1a_2^2+2a_2b_1p-6a_0a_2b_1p-3a_1b_1^2p\nonumber \\&\quad +2a_1b_2p-6a_0a_1b_2p\nonumber \\&\quad -2a_2b_1pq-2a_1b_2pq+2a_1Dk^2+2b_2k\lambda =0, \end{aligned}$$
(A.9)
$$\begin{aligned}&-3a_1^2a_2p-a_2^3p-3a_2b_1^2p+2a_2b_2p-6a_0a_2b_2p\nonumber \\&\quad -6a_1b_1b_2p-2a_2b_2pq+6a_2Dk^2=0, \end{aligned}$$
(A.10)
$$\begin{aligned} 3a_1a_2^2p+6a_2b_1b_2p+3a_1b_2^2p=0, \end{aligned}$$
(A.11)
$$\begin{aligned} a_2^3p+3a_2b_2^2p=0, \end{aligned}$$
(A.12)
$$\begin{aligned} a_0^2p-a_0^3p+a_1^2p-3a_0a_1^2p+a_0pq-a_0^2pq-a_1^2pq=0. \end{aligned}$$
(A.13)

Appendix-B

$$\begin{aligned} 6b_2Dk^2-b_2B_2-a_2A_2=0, \end{aligned}$$
(B.1)
$$\begin{aligned} 2b_1Dk^2+2a_2k\lambda -b_1B_2-a_1A_2-b_2B_1-a_2A_1=0, \end{aligned}$$
(B.2)
$$\begin{aligned} 4b_2Dk^2+a_1k\lambda -b_1B_1-a_1A_1+b_2-b_2A_0-a_2A_2-a_0B_2=0, \end{aligned}$$
(B.3)
$$\begin{aligned} b_1Dk^2+a_2k\lambda +b_1-b_1A_0-a_1A_2-a_2A_1-a_0B_1=0, \end{aligned}$$
(B.4)
$$\begin{aligned} a_2Dk^2+b_1k\lambda -b_1A_1-a_1B_1+a_2-a_2A_0-a_0A_2=0, \end{aligned}$$
(B.5)
$$\begin{aligned} 2a_1Dk^2+2b_2k\lambda -b_1A_2-a_1B_2-b_2A_1-a_2B_1=0, \end{aligned}$$
(B.6)
$$\begin{aligned} 6a_2Dk^2-b_2A_2-a_2B_2=0, \end{aligned}$$
(B.7)
$$\begin{aligned} a_1-a_1A_0-a_0A_1=0, \end{aligned}$$
(B.8)
$$\begin{aligned} a_0-a_0A_0-a_1A_1=0, \end{aligned}$$
(B.9)
$$\begin{aligned} 6B_2k^2+b_2B_2\rho +a_2A_2\rho =0, \end{aligned}$$
(B.10)
$$\begin{aligned} 2B_1k^2+2A_2k\lambda +b_2B_1\rho +b_1B_2\rho +a_2A_1\rho +a_1A_2\rho =0, \end{aligned}$$
(B.11)
$$\begin{aligned}&4B_2k^2+A_1k\lambda +\rho b_1B_1+a_0B_2\rho -B_2\rho +A_0b_2\rho \nonumber \\&\quad +a_1A_1\rho +a_2A_2\rho =0, \end{aligned}$$
(B.12)
$$\begin{aligned} B_1k^2+A_2k\lambda +a_0B_1\rho -B_1\rho +A_0b_1\rho +a_2A_1\rho +a_1A_2\rho =0, \end{aligned}$$
(B.13)
$$\begin{aligned} A_2k^2+B_1k\lambda +a_1B_1\rho +b_1A_1\rho +a_0A_2\rho -A_2\rho +A_0a_2\rho =0, \end{aligned}$$
(B.14)
$$\begin{aligned} 2A_1k^2+2B_2k\lambda +a_2B_1\rho +b_2A_1\rho +a_1B_2\rho +b_1A_2\rho =0, \end{aligned}$$
(B.15)
$$\begin{aligned} 6A_2k^2+a_2B_2\rho +b_2A_2\rho =0, \end{aligned}$$
(B.16)
$$\begin{aligned} a_0A_1\rho -A_1\rho +A_0a_1\rho =0, \end{aligned}$$
(B.17)
$$\begin{aligned} a_1A_1+a_0A_0-A_0=0. \end{aligned}$$
(B.18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Maitra, S. & Ghosh, A. Traveling wave solution and Painleve’ analysis of generalized fisher equation and diffusive Lotka–Volterra model. Int. J. Dynam. Control 9, 494–502 (2021). https://doi.org/10.1007/s40435-020-00689-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00689-w

Keywords

Navigation